Patents Examined by LaKaisha Jackson
  • Patent number: 11099591
    Abstract: A DLDO has a configuration that mitigates performance degradation associated with limit cycle oscillation (LCO). The DLDO comprises a clocked comparator, an array of power transistors, a digital controller and a clock pulsewidth reduction circuit. The digital controller comprises control logic configured to generate control signals that cause the power transistors to be turned ON or OFF in accordance with a preselected activation/deactivation control scheme. The clock pulsewidth reduction circuit receives an input clock signal having a first pulsewidth and generates the DLDO clock signal having the preselected pulsewidth that is narrower that the first pulsewidth, which is then delivered to the clock terminals of the clocked comparator and the digital controller. The narrower pulsewidth of the DLDO clock reduces the LCO mode to mitigate performance degradation caused by LCO.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: August 24, 2021
    Assignee: UNIVERSITY OF SOUTH FLORIDA
    Inventors: Selçuk Köse, Longfei Wang, S. Karen Khatamifard, Ulya R. Karpuzcu
  • Patent number: 11095220
    Abstract: A voltage regulation circuit includes a switching output terminal, a high-side output transistor, a low-side output transistor, a high-side replica transistor, a low-side replica transistor, and a comparator circuit. The high-side output transistor is configured to drive the switching output terminal. The low-side output transistor is configured to drive the switching output terminal. The high-side replica transistor is coupled to the high-side output transistor. The low-side replica transistor is coupled to the high-side replica transistor and the low-side output transistor. The comparator circuit is coupled to the high-side replica transistor and the low-side replica transistor, and is configured to compare a signal received from both the high-side replica transistor and the low-side replica transistor to a ramp signal.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: August 17, 2021
    Assignee: Texas Instruments Incorporated
    Inventors: Neil Gibson, Stefan Herzer
  • Patent number: 11088634
    Abstract: A DC-to-AC power converter having a main DC input and a main single-phase AC output, configured to convert and adapt a DC voltage at the main DC input into a sinusoidal AC voltage of a fundamental frequency at the main AC output and to deliver a rated power at the main AC output to a load includes: a single DC-to-DC converter having as input the main DC input and having a DC output and a tank capacitor being connected to the DC output, two low frequency diodes biased so as to be able to pass current from, respectively to, the DC output to, respectively from, the tank capacitor; and, according to a direct path, a bidirectional voltage-type DC-to-AC converter in cascade with the DC-to-DC converter, the bidirectional voltage-type DC-to-AC converter having a DC input-output connected to the DC output and an AC output-input connected to the main AC output.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: August 10, 2021
    Assignee: CE+T POWER LUXEMBOURG SA
    Inventors: Fabrice Frebel, Thierry Joannes, Olivier Caubo, Paul Bleus
  • Patent number: 11075512
    Abstract: The present invention is a smart electrical system comprising a smart control panel connected to various electrical interfaces. Each electrical interface is inbuilt with at least one IC chip to identify it. The smart control panel comprises a processing unit to process information from various electrical interfaces and load connected to each electrical interface. The processed information is displayed on the display unit, as at least one menu list, that allows the user to select and control various electrical interfaces from panel itself. The smart control panel allows the user to reset the circuit breaker box in case if it is tripped due to overload. The panel monitors each electrical interface and alerts user when overload or marginal load condition occurs.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: July 27, 2021
    Inventor: Darrell Noonan
  • Patent number: 11070144
    Abstract: The invention relates to a multi-level modular converter provided with a control circuit comprising a computer to calculate an internal control setpoint of the converter and an energy management circuit allowing a power setpoint to be determined that is to be transmitted to the alternating electrical power supply network, the control circuit being configured to regulate the voltage at the point of connection of the converter to the direct electrical power supply network and to regulate the voltage at the terminals of each capacitor modelled as a function of the internal control setpoint and of the power setpoint to be transmitted to the alternating electrical power supply network.
    Type: Grant
    Filed: July 4, 2018
    Date of Patent: July 20, 2021
    Assignees: SUPERGRID INSTITUTE, CENTRALESUPELEC
    Inventors: Kosei Shinoda, Jing Dai, Abdelkrim Benchaib, Xavier Guillaud
  • Patent number: 11063510
    Abstract: The feedback loop of a switching power converter controller is provided with an averaging circuit that averages either an output voltage, an error signal, or a control voltage. Regardless of which feedback signal is averaged, the averaging occurs over a first cycle of a rectified input voltage to form an averaged signal that is used by the feedback loop in a subsequent cycle of the rectified input voltage.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: July 13, 2021
    Assignee: DIALOG SEMICONDUCTOR INC.
    Inventors: Laiqing Ping, Xiaoyan Wang, Nan Shi
  • Patent number: 11063520
    Abstract: A converter includes input voltage terminals, a series circuit connected to the input voltage terminals and including first and second switches connected in series, a transformer including a primary winding and a secondary winding, a resonant tank connected to the series circuit and including the primary winding, an auxiliary switch connected to the series circuit and the resonant tank, output voltage terminals connected to the secondary winding, and a controller that, based on a single control loop and a single control parameter, controls the auxiliary switch with pulse-width modulation and controls the first and second switches with pulse-frequency modulation.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: July 13, 2021
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Yang Chen, Hongliang Wang, Yan-Fei Liu, Jahangir Afsharian, Bing Gong
  • Patent number: 11061422
    Abstract: Disclosed is a low dropout linear regulator and a voltage stabilizing method therefor in embodiments. The low dropout linear regulator includes: a drive circuit, generating a first control signal according to a voltage reference and a feedback voltage and generating an output current according to the first control signal, a load capacitor providing an output voltage according to the output current; a voltage feedback circuit, obtaining the feedback voltage according to the output voltage; a current feedback circuit, generating a second control signal according to the output current; a switch circuit, providing the voltage reference according to the second control signal. Among them, in a first phase of a startup process, the voltage reference is less than or equal to an initial value, and the current feedback circuit limits the output current according to the second control signal; in a second phase of the startup process, the switch circuit switches a voltage value of the voltage reference to a target value.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: July 13, 2021
    Assignee: CHIPONE TECHNOLOGY (BEIJING) CO., LTD.
    Inventor: Ning Jin
  • Patent number: 11063528
    Abstract: A multi-level inverter having at least two banks, each bank containing a plurality of low voltage MOSFET transistors. A processor configured to switch the plurality of low voltage MOSFET transistors in each bank to switch at multiple times during each cycle.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: July 13, 2021
    Assignee: Solaredge Technologies Ltd.
    Inventor: Ilan Yoscovich
  • Patent number: 11056878
    Abstract: A wireless power receiver has over-voltage protection (OVP) circuitry that performs different techniques for different over-voltage conditions. The OVP circuitry includes controllable resistive clamp circuitry (a resistor in series with a resistor control switch) and controllable capacitive clamp circuitry (a capacitor in series with a capacitor control switch). Based on an output-based feedback signal and a reference signal, comparison circuitry generates comparison signals, based on which a controller selectively enables (i) the resistive clamp circuitry intermittently for a relatively low over-voltage condition and continuously for a higher over-voltage condition and (ii) the capacitive clamp circuit to detune the receiver, both in order to decrease the rectified output voltage.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: July 6, 2021
    Assignee: NXP USA, Inc.
    Inventors: Xiang Gao, Zhendong Fei, Dechang Wang
  • Patent number: 11050357
    Abstract: A modular multilevel power converter includes first electric components on a first vehicle and second electric components on a second vehicle. The first vehicle and the second vehicle are placed at a spacing distance from each other. The first electric components and the second electric components are electrically interconnected by a plurality of first connecting conductors.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: June 29, 2021
    Assignee: Siemens Aktiengesellschaft
    Inventors: Thomas Mangold, Martin Pieschel, Uwe Stuermer, Tobias Tepe
  • Patent number: 11043902
    Abstract: A bidirectional DC DC converter that transfers power among an energy source (for example, a solar PV array), an energy storage system, and an energy usage system (for example, a DC AC inverter). The converter controls the charge and discharge times of the energy storage system so that power harvested during daylight can be metered to the DC AC inverter at predetermined times. During charge times, the converter utilizes synchronous rectification when down-converting higher voltages to lower voltages and during discharge times the converter utilizes variable overlapping of switch drive signals to provide a continuous range of voltage levels of transferred power from the energy storage system to the DC AC inverter.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: June 22, 2021
    Inventors: Eugene F. Krzywinski, William B. Reed, James A. Allen, Jr.
  • Patent number: 11025160
    Abstract: A power conversion device includes a rectifying circuit that full-wave rectifies an input AC power, a first conversion circuit that includes a passive element, a first switching element, and a second switching element and digitally converts a rectified power while compensating a power factor of the rectified power through at least one of the passive element, the first switching element, and the second switching element, a second conversion circuit that converts the digitally-converted power into a power with a specified magnitude and output the power with the specified magnitude, a device circuit that consumes an output power of the second conversion circuit, a first control circuit that monitors current consumption of the device circuit and controls an amount of output current of the second conversion circuit based on the current consumption of the device circuit, and a second control circuit that controls a power factor compensation degree of the first conversion circuit based on the current consumption, wh
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: June 1, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sung Yong Joo, Yong Joo Lee, Ka San Ha
  • Patent number: 11025159
    Abstract: An automotive power converter includes positive and negative DC rails, a pair of phase legs each having first and second switches connected in series, an output electrically connected between the first and second switches of each of the phase legs, and control circuitry configured to prevent turn on of the first switches responsive to current through either of the second switches exceeding a predefined threshold.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: June 1, 2021
    Assignee: Ford Global Technologies, LLC
    Inventors: Baoming Ge, Lihua Chen
  • Patent number: 11017971
    Abstract: A differential electrical protection device D including N?1 phase conductors, each phase conductor including, between an input, or upper, connection land and an output, or lower, connection land, a portion able to pass through a torus and a portion able to pass through a current measurement and supply sensor, the input connection lands being situated in a first plane P1, and the output connection lands extending in a second plane P2, in that the supply and measurement sensors of the N?1 phase conductors are each positioned in the space situated between the two planes P1,P2, and wherein it includes an additional phase conductor including an input connection land and an output connection land, a portion able to pass through the torus and a portion able to pass through an additional measurement sensor only measuring the current, this additional measurement sensor being of small size and being positioned directly above the torus in such a way that the assembly formed by the torus and the additional sensor is situ
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: May 25, 2021
    Assignees: Schneider Electric Industries SAS, Fuji Electric FA Components & Systems Co., Ltd
    Inventors: Jean-Pierre Nereau, Yutaka Sato, Takashi Hashimoto, Yohei Hosooka
  • Patent number: 11005364
    Abstract: A method involves determining a target number of valleys of a resonant waveform at a drain node of a main switch of a power converter. The target number of valleys corresponds to a desired off-time of the main switch. A first intermediate valley number of a series of intermediate valley numbers is selected. An average of the series of intermediate valley numbers corresponds to the target number of valleys. A first average off-time of the main switch is controlled, for a duration of a first modulation period, such that the first average off-time corresponds to the first intermediate valley number. Upon expiration of the first modulation period, a second intermediate valley number of the intermediate valley numbers is selected. A second average off-time of the main switch is controlled, for a duration of a second modulation period, such that the second average off-time corresponds to the second intermediate valley number.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: May 11, 2021
    Assignee: Silanna Asia Pte Ltd
    Inventor: Aleksandar Radic
  • Patent number: 11005383
    Abstract: A switching power supply device includes a switching circuit including first switching elements, a rectification circuit including second switching elements, a smoothing circuit, and a controller. The controller performs switching between synchronous rectification control for driving the second switching elements and in synchronization with the switching circuit and asynchronous rectification control for driving the second switching elements independently of the switching circuit, and performs feedback control based on a normal duty on the first switching elements and the second switching elements. When the synchronous rectification control is switched to the asynchronous rectification control, the controller replaces the normal duty with a switching duty different from the normal duty and performs feedback control by the normal duty after the synchronous rectification control is switched to the asynchronous rectification control.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: May 11, 2021
    Assignee: YAZAKI CORPORATION
    Inventor: Yoshihiro Yamasaki
  • Patent number: 10998828
    Abstract: The task of the present invention is to enhance safety of an insulation-type DC/DC converter. The present invention relates to an insulation-type DC/DC converter, an AC/DC converter, a power adapter and an electronic device. A switch transistor is disposed on a primary side of a transformer, and a synchronous rectification transistor is disposed on a secondary side of the transformer. A primary-side control portion performs switch-driving of the switch transistor, and a secondary-side control portion controls turn-on and turn-off of the synchronous rectification transistor. A pulse transformer portion for implementing bi-directional communication between the primary-side control portion and the secondary-side control portion is disposed between the primary side and the secondary side. For example, signals associated with turn-on and turn-off of the switch transistor are transceived between the primary-side control portion and the secondary-side control portion by a pulse transformer portion.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: May 4, 2021
    Assignee: Rohm Co., Ltd.
    Inventor: Hideo Hara
  • Patent number: 10998713
    Abstract: Provided is a relay device that can switch conduction of a current flow path between power storage units on and off, and can suppress a decrease in the output of the power storage units if an abnormality occurs. A relay device includes: a conductive path between a first power storage unit and a second power storage unit, the conductive path serving as a path through which a current flows; a switch unit that is switched between an ON state in which a current can flow through the conductive path, and an OFF state in which the conductive path is in a predetermined no current flow state; a coil that is connected in series to MOSFETs constituting the switch unit, and has an inductance component; and a control unit configured to switch off the switch unit if a value detected by a current detection unit is a predetermined abnormal value.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: May 4, 2021
    Assignees: AutoNetworks Technologies, Ltd., Sumitomo Wiring Systems, Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Hiromichi Yasunori, Kosei Maekawa
  • Patent number: 10969808
    Abstract: A switching converter controller includes an on-time timer circuit coupled to a switch driver circuit. The on-time timer circuit includes an up/down counter with a clock input node. The on-time timer circuit also includes a latch with an input coupled to an external clock signal and with an output coupled to the clock input node. The on-time timer circuit also includes an on-time capacitor array with a control terminal coupled an output of the up/down counter.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: April 6, 2021
    Assignee: Texas Instruments Incorporated
    Inventors: Zejing Wang, Zhujun Li