Patents Examined by Lex Malsawma
  • Patent number: 10290825
    Abstract: An organic light emitting diode display includes: a substrate; a first electrode on the substrate; a second electrode opposed to the first electrode; a first light emitting unit and a second light emitting unit between the first electrode and the second electrode; and a charge generation layer between the first light emitting unit and the second light emitting unit. The first light emitting unit includes a blue fluorescent light emitting layer. The second light emitting unit includes a blue light emitting layer and a yellow light emitting layer.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: May 14, 2019
    Assignee: Samsung Display Co., Ltd.
    Inventors: Yonghan Lee, Sungsoo Lee, Woosik Jeon
  • Patent number: 10263217
    Abstract: A flexible organic light emitting display (OLED) device includes a flexible substrate having a display area, a non-display area at a periphery of the display area and a folding region; at least one organic emitting diode on the flexible substrate in the display area; an encapsulation film covering the organic emitting diode; and a dam on the flexible substrate. The dam laterally surrounds the display area and includes: a first dam in the folding region; and a second dam outside the folding region, wherein the average thickness of the first dam is smaller than the average thickness of the second dam.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: April 16, 2019
    Assignee: LG Display Co., Ltd.
    Inventors: Jae-Young Lee, Ji-Min Kim, Gi-Youn Kim, Sang-Hoon Oh, Wan-Soo Lee
  • Patent number: 10263213
    Abstract: A display device including a first substrate including a display area that displays an image and a peripheral area, in which no image is displayed, surrounding the display area. The display device further includes a plurality of pixels disposed in the display area. The display device additionally includes a first metal layer disposed above the first substrate in the peripheral area, and the first metal layer including a plurality of openings. The display device further includes a sealant disposed above the first metal layer, and surrounding the plurality of pixels. The display device additionally includes a plurality of second metal layers disposed above the first substrate and below the first metal layer in the peripheral area, and respectively overlapping the openings of the first metal layer. A part of the sealant is disposed in the plurality of openings.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: April 16, 2019
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Moo Soon Ko, Young Woo Park, Il Jeong Lee, Sang-Mok Hong
  • Patent number: 10256385
    Abstract: LED packages and related methods are provided. The LED packages can include a submount having a top and bottom surface and a plurality of top electrically conductive elements on the top surface of the submount. An LED can be disposed on one of the top electrically conductive elements. The LED can emit a dominant wavelength generally between approximately 600 nm and approximately 650 nm, and more particularly between approximately 610 nm and approximately 630 nm when an electrical signal is applied to the top electrically conductive elements. A bottom thermally conductive element can be provided on the bottom surface and is not in electrical contact with the top electrically conductive elements. A lens can be disposed over the LED. The LED packages can have improved lumen performances, lower thermal resistances, improved efficiencies, and longer operational lifetimes.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: April 9, 2019
    Assignee: Cree, Inc.
    Inventors: Jeffrey Carl Britt, Yankun Fu
  • Patent number: 10249502
    Abstract: Techniques for forming a metastable phosphorous P-doped silicon Si source drain contacts are provided. In one aspect, a method for forming n-type source and drain contacts includes the steps of: forming a transistor on a substrate; depositing a dielectric over the transistor; forming contact trenches in the dielectric that extend down to source and drain regions of the transistor; forming an epitaxial material in the contact trenches on the source and drain regions; implanting P into the epitaxial material to form an amorphous P-doped layer; and annealing the amorphous P-doped layer under conditions sufficient to form a crystalline P-doped layer having a homogenous phosphorous concentration that is greater than about 1.5×1021 atoms per cubic centimeter (at./cm3). Transistor devices are also provided utilizing the present P-doped Si source and drain contacts.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: April 2, 2019
    Assignee: International Business Machines Corporation
    Inventors: Oleg Gluschenkov, Zuoguang Liu, Shogo Mochizuki, Hiroaki Niimi, Tenko Yamashita, Chun-chen Yeh
  • Patent number: 10243159
    Abstract: An organic light emitting diode display includes: a substrate; a first electrode on the substrate; a second electrode opposed to the first electrode; a first light emitting unit and a second light emitting unit between the first electrode and the second electrode; and a charge generation layer between the first light emitting unit and the second light emitting unit. The first light emitting unit includes a blue fluorescent light emitting layer. The second light emitting unit includes a blue light emitting layer and a yellow light emitting layer.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: March 26, 2019
    Assignee: Samsung Display Co., Ltd.
    Inventors: Yonghan Lee, Sungsoo Lee, Woosik Jeon
  • Patent number: 10236332
    Abstract: The present disclosure relates to an organic light emitting diode display having high luminescence. The present disclosure suggests an organic light emitting diode display comprising: a data line, a scan line and a driving current line defining a pixel area on a substrate; an anode electrode formed within the pixel area; an additional capacitance formed by overlapping expanded portions of the anode electrode with some portions of the driving current line; a bank defining a light emitting area in the anode electrode; an organic emission layer formed on the anode electrode; and a cathode electrode formed on the organic emission layer. The present disclosure suggests high luminescence organic light emitting diode display by including an additional capacitance for increasing the anode capacitance.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: March 19, 2019
    Assignee: LG Display Co., Ltd.
    Inventors: Kimoon Jung, Soonjae Hwang, Jongsik Shim
  • Patent number: 10224386
    Abstract: An organic light-emitting diode display may have an array of pixels. The pixels may each have an organic light-emitting diode with a respective anode and may be formed from thin-film transistor circuitry formed on a substrate. A mesh-shaped path may be used to distribute a power supply voltage to the thin-film circuitry. The mesh-shaped path may have intersecting horizontally extending lines and vertically extending lines. The horizontally extending lines may be zigzag metal lines that do not overlap the anodes. The vertically extending lines may be straight vertical metal lines that overlap the anodes. The pixels may include pixels of different colors. Angularly dependent shifts in display color may be minimized by ensuring that the anodes of the differently colored pixels overlap the vertically extending lines by similar amounts.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: March 5, 2019
    Assignee: Apple Inc.
    Inventors: Warren S. Rieutort-Louis, Ting-Kuo Chang, Chieh-Wei Chen, Cheng-Ho Yu
  • Patent number: 10217776
    Abstract: A semiconductor device including a capacitor having an increased charge capacity without decreasing an aperture ratio is provided. The semiconductor device includes a transistor including a light-transmitting semiconductor film, a capacitor in which a dielectric film is provided between a pair of electrodes, and a pixel electrode electrically connected to the transistor. In the capacitor, a conductive film formed on the same surface as the light-transmitting semiconductor film in the transistor serves as one electrode, the pixel electrode serves as the other electrode, and a nitride insulating film and a second oxide insulating film which are provided between the light-transmitting semiconductor film and the pixel electrode serve as the a dielectric film.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: February 26, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masahiro Katayama, Ami Sato, Yukinori Shima
  • Patent number: 10217899
    Abstract: Disclosed is a light emitting diode using light of a short wavelength band. The light emitting diode includes a first conductivity type semiconductor layer having a front side and a back side, a second conductivity type semiconductor layer having a front side and a back side, an active layer formed between the back side of the first conductivity type semiconductor layer and the front side of the second conductivity type semiconductor layer, a first electrode electrically connected to the first conductivity type semiconductor layer, a second conductivity type reflective layer formed on the back side of the second conductivity type semiconductor layer, and a reflective part formed on the second conductivity type reflective layer to reflect light of a short wavelength band and light of a blue wavelength band and electrically connected to the second conductivity type semiconductor layer. The second conductivity type reflective layer includes DBR unit layers.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: February 26, 2019
    Assignee: Lumens Co., Ltd.
    Inventor: Dae Won Kim
  • Patent number: 10217840
    Abstract: Replacement metal gate structures with improved chamfered workfunction metal and self-aligned contact and methods of manufacture are provided. The method includes forming a replacement metal gate structure in a dielectric material. The replacement metal gate structure is formed with a lower spacer and an upper spacer above the lower spacer. The upper spacer having material is different than material of the lower spacer. The method further includes forming a self-aligned contact adjacent to the replacement metal gate structure by patterning an opening within the dielectric material and filling the opening with contact material. The upper spacer prevents shorting with the contact material.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: February 26, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Theodorus E. Standaert, Junli Wang
  • Patent number: 10211275
    Abstract: An organic light emitting diode display panel includes data lines arranged in a first direction; gate lines arranged in a second direction to cross the data lines; a driving voltage line arranged in the first direction; a reference voltage line arranged in the first direction; data pads respectively at ends of corresponding ones of the data lines; a driving voltage pad at an end of the driving voltage line; and a reference voltage pad at an end of the reference voltage line. A first distance is defined between the driving voltage pad and an adjacent data pad, a second distance is defined between adjacent ones of the data pads, and a third distance is defined between the reference voltage pad and an adjacent data pad. At least two of the first distance, the second distance, and the third distance are different from each other.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: February 19, 2019
    Assignee: LG Display Co., Ltd.
    Inventors: ChongHun Park, Hooin Park, Jaeyi Choi
  • Patent number: 10211261
    Abstract: Embodiments of the present disclosure disclose a pixel structure, a mask plate, an organic electroluminescent display panel and a display device. The pixel structure comprises: a plurality of pixel units arranged in array, each pixel unit comprising four sub-pixels arranged diagonally and having the same shape and size; wherein colors of the four sub-pixels in each pixel unit are different from each other; colors of two adjacent sub-pixels in any two adjacent pixel units are same. The above pixel structure provided by embodiments of the present disclosure may enable the color of any sub-pixel in a pixel unit to be same as the colors of three sub-pixels that are located in other three pixel units adjacent to this pixel unit respectively and are symmetric with this sub-pixel relative to a same point.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: February 19, 2019
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., ORDOS YUANSHENG OPTOELECTRONICS CO., LTD.
    Inventors: Kun Guo, Yanqing Wang, Bo Zhang, Fei Chen, Jianbin Feng, Fan Yang
  • Patent number: 10211391
    Abstract: A semiconductor device includes a resistance variable element including a free magnetic layer, a tunnel barrier layer and a pinned magnetic layer; and a magnetic correction layer disposed over the resistance variable element to be separated from the resistance variable element, and having a magnetization direction which is opposite to a magnetization direction of the pinned magnetic layer.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: February 19, 2019
    Assignee: SK hynix Inc.
    Inventors: Seok-Pyo Song, Se-Dong Kim, Hong-Ju Suh
  • Patent number: 10204885
    Abstract: A semiconductor package may include a first redistribution layer (RDL); a first semiconductor chip on a top surface of the first RDL, the first semiconductor chip including a first circuit surface and a first bottom surface, the first circuit surface having first I/O pads thereon, the first I/O pads configured to electrically connect the first semiconductor chip to the first RDL via first wire bonds; a second semiconductor chip on the first semiconductor chip, the second semiconductor chip including a second circuit surface and a second bottom surface; and a second RDL on the second semiconductor chip, the second RDL facing both the first circuit surface and the second circuit surface.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: February 12, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Tae Joo Hwang
  • Patent number: 10204976
    Abstract: An organic light emitting diode display includes a substrate, a scan line on the substrate for transferring a scan signal, a data line crossing the scan line and for transferring a data signal, a driving voltage line crossing the scan line and for transferring a driving voltage, a switching thin film transistor coupled to the scan line and the data line, a driving thin film transistor coupled to a switching drain electrode of the switching thin film transistor, and an organic light emitting diode (OLED) coupled to a driving drain electrode of the driving thin film transistor, wherein a driving semiconductor layer of the driving thin film transistor is bent and in a plane substantially parallel to the substrate.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: February 12, 2019
    Assignee: Samsung Display Co., Ltd.
    Inventors: Se-Ho Kim, Jin-Woo Park, Won-Se Lee
  • Patent number: 10204845
    Abstract: A semiconductor chip package includes a semiconductor chip disposed over a main surface of a carrier. An encapsulation body encapsulates the chip. First electrical contact elements are electrically coupled to the chip and protrude out of the encapsulation body through a first side face of the encapsulation body. Second electrical contact elements are electrically coupled to the chip and protrude out of the encapsulation body through a second side face of the encapsulation body opposite the first side face. A first group of the first electrical contact elements and a second group of the first electrical contact elements are spaced apart by a distance D that is greater than a distance P between adjacent first electrical contact elements of the first group and between adjacent first electrical contact elements of the second group. The distances D and P are measured between center axes of electrical contact elements.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: February 12, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Ralf Otremba, Amirul Afiq Hud, Chooi Mei Chong, Josef Hoeglauer, Klaus Schiess, Lee Shuang Wang, Matthias Strassburg, Teck Sim Lee, Xaver Schloegel
  • Patent number: 10205122
    Abstract: An organic light-emitting display including a substrate, an insulating layer on the substrate, the substrate and the insulating layer having an opening therethrough penetrating, a pixel array on the insulating layer, the pixel array including a plurality of pixels that surround the opening, a first pixel adjacent to the opening from among the plurality of pixels includes a pixel electrode layer, an intermediate layer on the pixel electrode layer, and an opposite electrode layer on the intermediate layer, and a stepped portion on the substrate and adjacent to the opening, the stepped portion having an under-cut step, wherein the intermediate layer including an organic emission layer, and wherein at least one of the intermediate layer and the opposite electrode layer extends toward the opening and is disconnected by the stepped portion.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: February 12, 2019
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jonghyun Choi, Kinyeng Kang, Sunkwang Kim, Suyeon Sim
  • Patent number: 10199587
    Abstract: An organic photoelectric conversion element, an imaging device, and an optical sensor, which can detect a plurality of wavelength regions by a single element structure, are provided. The photoelectric conversion element is formed by providing an organic photoelectric conversion portion including two or more types of organic semiconductor materials having different spectral sensitivities between the first and the second electrodes. Wavelength sensitivity characteristics of the photoelectric conversion element change according to a voltage (bias voltage) applied between the first and the second electrodes. The photoelectric conversion element is mounted in the imaging device and the optical sensor.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: February 5, 2019
    Assignee: SONY CORPORATION
    Inventors: Toru Udaka, Masaki Murata, Rui Morimoto, Osamu Enoki
  • Patent number: 10199438
    Abstract: A top-emitting organic electroluminescent display panel, a manufacturing method, and a display device. The top-emitting organic electroluminescent display panel comprises: a substrate, a layer of white organic light emitting diodes and a thin film encapsulation layer arranged on the substrate in sequence. The thin film encapsulation layer comprises at least two inorganic thin film layers and at least one organic thin film layer. At least one organic thin film layer is a color filter layer, the color filter layer being arranged between the at least two inorganic thin film layers. Since one of the organic thin film layers in the thin film encapsulation layer is a color filter layer, the color filter layer does not have to be arranged above the thin film encapsulation layer separately, thus reducing the number of film layers, simplifying the film layer structure, reducing manufacturing costs, and improving the luminous efficiency and the display effect.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: February 5, 2019
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Joohyeon Lee, Lujiang Huangfu, Jinsan Park