Patents Examined by Lindsey G. Wehrheim
  • Patent number: 10744322
    Abstract: A cochlear implant for processing signal parameters which are adapted for controlling the cochlear implant, which are based on the audio signal and which enable generating a representation of the audio signal by the cochlear implant includes a receive interface which is implemented to receive the signal parameters and a nerve stimulator for processing the signal parameters to generate nerve cell stimulation signals based on the signal parameters. A device for generating a control signal for a cochlear implant on the basis of an audio signal includes a cochlear parameter extractor for analyzing the audio signal which is implemented to generate signal parameters as input information for the cochlear implant based on an analysis of the audio signal using a human hearing simulation model, and a transmit interface for transmitting the signal parameters to the cochlear implant.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: August 18, 2020
    Assignee: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Bernd Edler, Andreas Buechner, Waldo Nogueira, Frank Klefenz
  • Patent number: 10716537
    Abstract: A medical imaging system employs a transesophageal probe (20) including an ultrasound transducer (21) for scanning a patient's heart and atrial electrode(s) (22) for generating atrial electrocardiogram signal(s) predominately indicative of electrical activity of atrium chambers of the patient's heart. The medical imaging system further employs ventricular electrode(s) (23) for generating ventricular electrocardiogram signal(s) predominately indicative of electrical activity of ventricle chambers of the patient's heart. The medical imaging system further employs an electrocardiogram machine (30) for generating an electrocardiogram waveform based on the indicated electrical activities of the patient's heart, and for generating a cardiac gating signal representative of a cyclical cardiac phase period of the electrocardiogram waveform.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: July 21, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Richard E. Gregg
  • Patent number: 10716501
    Abstract: This disclosure relates generally to stress classification and quantification, and more particularly to system and method for classification and quantitative estimation of cognitive stress from analysis of keystrokes and signals derived from physiological sensors. In one embodiment, a method includes obtaining, while a user is engaged in performance of a task, physiological signals from physiological sensors accessible to the user. Feature sets are identified from the physiological signals which correlate with cognitive stress experienced by the user. Using a regression model, a stress indicator metric comprising a quantitative estimate of the cognitive stress is predicted. The regression model is trained using the feature sets and independently determined quantitative estimates of cognitive stress used as a ground truth to output the value of the stress indicator metric.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: July 21, 2020
    Assignee: Tata Consultancy Services Limited
    Inventors: Deepan Das, Tanuka Bhattacharjee, Shreyasi Datta, Anirban Dutta Choudhury, Pratyusha Das, Arpan Pal
  • Patent number: 10694967
    Abstract: An implantable medical device includes a memory storing criteria for transitioning between states of a cardiac cycle model, the states including a P-wave state. The device also includes sensing circuitry that senses a cardiac signal that varies as a function of a cardiac cycle of a patient, and also includes processing circuitry coupled to the sensing circuitry. The processing circuitry is configured to detect an R-wave in the sensed cardiac signal, to determine an elapsed time since the detection of the R-wave, to determine one or more morphological values of a post-R-wave segment of the cardiac signal to compare the elapsed time and the one or more morphological values to the stored criteria for transitioning between the plurality of states of the cardiac cycle model, and to detect a P-wave in the sensed cardiac signal in response to a transition to the P-wave state of the cardiac cycle model.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: June 30, 2020
    Assignee: Medtronic, Inc.
    Inventors: Michael T. Hemming, Saul E. Greenhut
  • Patent number: 10675466
    Abstract: Apparatus and methods for managing pain uses a single composite modulation/stimulation signal with variable characteristics to achieve the same results as separate varying electromagnetic signals. The composite signal is utilized for modulating the expression of genes involved in diverse pathways including inflammatory/immune system mediators, ion channels and neurotransmitters, in both the Spinal Cord (SC) and Dorsal Root Ganglion (DRG) where such expression modulation is caused by spinal cord stimulation or peripheral nerve stimulation using the disclosed apparatus and techniques.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: June 9, 2020
    Assignee: STIMGENICS, LLC
    Inventors: Ricardo Vallejo, David Leonardo Cedeno
  • Patent number: 10675455
    Abstract: An oral care implement having conductive protrusions. In one embodiment, the oral care implement includes a handle and a head coupled to the handle. Furthermore, the oral care implement includes a power source. A plurality of conductive protrusions may be electrically coupled to the power source. The plurality of conductive protrusions may include a base proximate the head and a distal end spaced from the head. Furthermore, at least one of the conductive protrusions may taper from the base to the distal end.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: June 9, 2020
    Assignee: Colgate-Palmolive Company
    Inventors: Patrik Johansson, Harsh Mahendra Trivedi, Douglas Hohlbein
  • Patent number: 10668295
    Abstract: A stimulation device that stimulates living tissue includes an energy harvesting circuit that receives an output signal from another device and that powers the stimulation device, immediately or otherwise, using the output signal. The stimulation devices also includes a stimulation circuit that generates a stimulation signal to elicit a predetermined response from the living tissue, and at least one lead that delivers the stimulation signal to the living tissue.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: June 2, 2020
    Assignee: MR3 MEDICAL, LLC
    Inventors: Alois Langer, Morton M. Mower
  • Patent number: 10660612
    Abstract: An embodiment of the disclosure provides an ultrasound probe including a single large-area ASIC in which a plurality of ultrasonic transducer elements are bonded. According to an embodiment, an ultrasound probe comprises: a transducer array including a plurality of transducer elements configured to transmit or receive ultrasound; and an integrated circuit, in which the transducer array is bonded, including a plurality of driving elements corresponding to the plurality of transducer elements, wherein the integrated circuit comprises a time delay table configured to output time delay information regarding respective ultrasound transmission and reception of the plurality of transducer elements.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: May 26, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kyung Il Cho, Jong Keun Song
  • Patent number: 10653324
    Abstract: An apparatus including a band; and a first device configured to attach to a person's wrist using the band; wherein the first device includes a first carbon monoxide level detector; wherein the first device includes a housing and a second device configured to be moved with respect to the housing from a first state to a second state; wherein in the first state a person cannot blow into the second device and cause a carbon monoxide level of the person's breath to be detected by the first carbon monoxide level detector; and wherein in the second state the person can blow into the second device and cause a carbon monoxide level of the person's breath to be detected by the first carbon monoxide level detector. The first device may include a second carbon monoxide level detector which is configured to detect a carbon monoxide level in ambient air.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: May 19, 2020
    Inventor: Kelechi Ignatius Mbata
  • Patent number: 10653318
    Abstract: Provided are a localization system and method useful in the acquisition and analysis of cardiac information. The localization system and method can be used with systems that perform cardiac mapping, diagnosis and treatment of cardiac abnormalities, as examples, and in the retrieval, processing, and interpretation of such types of information. The localization system and method use high impedance inputs, improved isolation, and relatively high drive currents for pairs of electrodes used to establish a multi-axis coordinate system. The axes can be rotated and scaled to improve localization.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: May 19, 2020
    Assignee: ACUTUS MEDICAL, INC.
    Inventors: Daniel J. Welsh, Marcus F. Julian, Graydon E. Beatty, Xinwei Shi, Derrick R. Chou, Randell L. Werneth, J. Christopher Flaherty
  • Patent number: 10646709
    Abstract: Cochlear implant systems can include a cochlear electrode, a stimulator in electrical communication with the cochlear electrode, and a signal processor in communication with the stimulator. The signal processor can receive an input signal from an input source and output a stimulation signal to the stimulator based on the received input signal and a transfer function of the signal processor. The signal processor can be connected to the stimulator via a first detachable connector configured to detachably connect and provide communication between the signal processor and the stimulator. The signal processor can be connected to the input source via a second detachable connector configured to detachably connect and provide communication between the signal processor and the input source. A modular signal processor can be detached from the stimulator and the input source for repair or replacement.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: May 12, 2020
    Assignee: Envoy Medical Corporation
    Inventors: Paul R. Mazanec, Benjamin R. Whittington, Timothy J. Earnest
  • Patent number: 10639410
    Abstract: Devices, systems and methods for establishing a blood flow conduit between a chamber in a heart of a patient and a remote location. A blood inflow cannula having an outer surface and proximal and distal end portions. The distal end portion is configured for insertion into the chamber of the heart. First and second anchor elements have respective maximum width dimensions extending outwardly from the outer surface of the cannula. The first anchor element is positioned more distally than the second anchor element defining a tissue receiving space therebetween. The maximum width dimension of the first anchor element may be larger than the maximum width dimension of the second anchor element in use. The first anchor element is configured to be positioned inside the heart chamber and the second anchor element is configured to be positioned outside the heart chamber with heart tissue held in the tissue receiving space therebetween.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: May 5, 2020
    Assignee: CircuLite, Inc.
    Inventors: Oliver Marseille, Wolfgang Kerkhoffs
  • Patent number: 10634774
    Abstract: According to one embodiment, an ultrasound diagnosis apparatus includes a storage and processing circuitry. The storage is configured to store noise data acquired in advance with respect to each scan line. The processing circuitry is configured to subtract, from raster data sequentially acquired, the noise data corresponding to a scan line of the raster data over a plurality of frames.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: April 28, 2020
    Assignee: Canon Medical Systems Corporation
    Inventor: Tomohiro Fujita
  • Patent number: 10617311
    Abstract: As a non-limiting example, various aspects of this disclosure provide embodiments of real-time heartbeat events detection using low-power, low-noise motion sensor.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: April 14, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Yelei Li
  • Patent number: 10610115
    Abstract: Described here are methods, devices, and systems for characterizing a physiological signal, and more specifically an electrocardiogram (ECG) signal. Generally, the method includes receiving an ECG signal generated by an ECG device coupled to a patient. The ECG signal may comprise a plurality of cardiac beat intervals. A set of evaluable replicates may be identified using a signal-to-noise ratio (SNR) for each cardiac beat, a repolarization signal, and an isoelectric line. Interval measurements may be determined from the set of evaluable multi-beat sequences. An ECG signal characteristic may be determined from the interval measurements.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: April 7, 2020
    Assignee: eResearch Technology, Inc.
    Inventors: Alexander Zapesochny, Jean-Philippe Y. Couderc, Thuan G. Pham, Mark L. Ticktin, Randolph F. Brown, IV
  • Patent number: 10603498
    Abstract: A method or system for facilitating the determining and setting of stimulation parameters for programming an electrical stimulation system using closed loop programming is provided. For example, pulse generator feedback logic is executed by a processor to interface with control instructions of an implantable pulse generator by incorporating one or more machine learning engines to automatically generate a proposed set of stimulation parameter values that each affect a stimulation aspect of the implantable pulse generator, receive one or more clinical responses and automatically generate a revised set of values taking into account the received clinical responses, and repeating the automated receiving of a clinical response and adjusting the stimulation parameter values taking the clinical response into account, until or unless a stop condition is reach or the a therapeutic response is indicated within a designated tolerance.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: March 31, 2020
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: David Blum, Sherry Lin, Hemant Bokil, Michael A. Moffitt
  • Patent number: 10596369
    Abstract: A hermetically sealed filtered feedthrough assembly includes an electrically conductive ferrule sealed by a first gold braze to an insulator disposed at least partially within a ferrule opening. A conductive wire is disposed within a via hole disposed through the insulator extending from a body fluid side to a device side. A second gold braze hermetically seals the conductive leadwire to the via hole. A capacitor is disposed on the device side having a capacitor dielectric body with a dielectric constant k that is greater than 0 and less than 1000. The capacitor is the first filter capacitor electrically connected to the conductive leadwire coming from the body fluid side into the device side. An active electrical connection electrically connects the conductive leadwire to the capacitor active metallization. A ground electrical connection electrically connects the capacitor ground metallization to the ferrule and housing of the active implantable medical device.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: March 24, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Thomas Marzano, Keith W. Seitz, Marc Gregory Martino
  • Patent number: 10595737
    Abstract: A computer-implemented method for processing ECG data may include: receiving, over an electronic network, ECG data, wherein the ECG data represents a plurality of heartbeats; analyzing the ECG data, by at least one processor, to determine whether each of the plurality of heartbeats is a normal heartbeat or an abnormal heartbeat; associating, by the at least one processor, each of the abnormal heartbeats with either only one of a plurality of existing templates or a new template; receiving, from a user, input related to each new template, wherein the input includes either: a) a confirmation that the new template represents an abnormal heartbeat, or b) a reclassification of the new template as representing a normal heartbeat or a different abnormal heartbeat; and in response to the user input, updating, by the at least one processor, a label of each of the heartbeats associated with each confirmed new template and each of the heartbeats associated with each reclassified new template.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: March 24, 2020
    Assignee: InfoBionic, Inc.
    Inventors: Lev Korzinov, Eric Baumann, Anna McNamara
  • Patent number: 10588527
    Abstract: Systems, devices, methods, and techniques relating to generating and presenting information related to heart rate data. In one aspect, a system includes a monitoring device configured to obtain physiological data for a living being and to generate annotation data based on the physiological data for a total time period, a processing system configured to obtain the annotation data via a communication channel from the monitoring device and to generate for display based on the annotation data a daily patient report that includes, a chart showing summary statistical data for a proportion of a total monitored time period spent in cardiac arrhythmia for each of a plurality of days and summary statistical data for a proportion of the total monitored time period not spent in cardiac arrhythmia for each of the plurality of days.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: March 17, 2020
    Assignee: Braemar Manufacturing, LLC
    Inventors: Anna McNamara, Jonathan Newbrough, Charles Gropper, Aaron Goldmuntz, Yachuan Pu
  • Patent number: 10589107
    Abstract: A feedthrough separates a body fluid side from a device side. A passageway is disposed through the feedthrough. A body fluid side leadwire extends from a first end disposed inside the passageway to a second end on the body fluid side. A device side leadwire extends from a first end disposed inside the passageway to a second end on the device side. The body fluid side leadwire is hermetically sealed to the feedthrough body and is not of the same material as the device side leadwire. A circuit board has an active via hole with a second end of the second leadwire residing therein. The circuit board has an active circuit trace that is electrically connectable to electronic circuits housed in an AIMD, and a circuit board ground metallization.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: March 17, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Keith W. Seitz, Thomas Marzano, Robert A. Stevenson, Christine A. Frysz, Jason Woods, Richard L. Brendel, Marc Gregory Martino