Patents Examined by Lois Zheng
  • Patent number: 9090952
    Abstract: A high-strength cold-rolled steel sheet having high chemical convertibility and a tensile strength of 590 MPa or more and a method for producing such a steel sheet are provided. The steel sheet contains, in terms of percent by mass, C: 0.05 to 0.3%, Si: 0.6 to 3.0%, Mn: 1.0 to 3.0%, P: 0.1% or less, S: 0.05% or less, Al: 0.01 to 1%, N: 0.01% or less, and the balance being Fe and unavoidable impurities. The coverage ratio of reduced iron on a steel sheet surface is 40% or more. In order to produce such a steel sheet, an oxidation treatment is performed after cold rolling. Subsequently, annealing is conducted in a furnace in a 1 to 10 vol % H2+balance N2 gas atmosphere with a dew point of ?25° C. or less.
    Type: Grant
    Filed: December 24, 2010
    Date of Patent: July 28, 2015
    Assignee: JFE Steel Corporation
    Inventors: Yoichi Makimizu, Yoshitsugu Suzuki, Mai Miyata, Naoto Yoshimi, Junichiro Hirasawa, Shinji Otsuka, Hideki Nagano, Kohei Hasegawa
  • Patent number: 9090951
    Abstract: The invention relates to a method for the production of a hardened component made of a hardenable steel, wherein the steel strip is exposed to a temperature increase in an oven, and is thus exposed to an oxidizing treatment such that a surface oxide layer is created, and subsequently a coating using a metal or a metal alloy is carried out. The strip is heated and at least partially austenitized for producing an at least partially hardened component, and subsequently cooled and thereby hardened. The invention also relates to a steel strip produced according to said method.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: July 28, 2015
    Assignee: VOESTALPINE STAHL GMBH
    Inventors: Werner Brandstätter, Siegfried Kolnberger, Thomas Kurz, Martin Peruzzi, Johann Strutzenberger, Thomas Manzenreiter
  • Patent number: 9080235
    Abstract: A composition for diffusion surface alloying of ferrocarbon alloys with chromium, consisting essentially of, by weight, about 25%-40% ferrochromium; about 54%-74% aluminum oxide or mixtures of aluminum oxide, silicon oxide and magnesium oxide in a weight ratio of about 3:2:1; about 1%-3% ammonium chloride; and a reducing agent consisting essentially of about 0.1%-3% aluminum, about 0.1%-2% silicon, about 0.1%-1.5% magnesium, or about 0.1%-3% of a mixture of aluminum, silicon and magnesium in a weight ratio of about 3:2:1. A method for diffusion surface alloying of a ferrocarbon workpiece with chromium, comprising providing the above composition; exposing the workpiece to the composition; and heating the workpiece and composition for sufficient time and temperature to form a chromium containing diffusion layer on the surface of the workpiece.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: July 14, 2015
    Assignee: JAMAR INTERNATIONAL CORPORATION
    Inventors: Lidiya Omovna Chunyayeva, Oleg Nikolayevich Chunyayev, Leonid Leonidovich Tovazhnyanskyy
  • Patent number: 9073120
    Abstract: A surface-passivated lithium metal, which has a composite top layer containing or consisting of at least two poorly soluble components containing lithium. Production of the surface-passivated lithium metal such that lithium metal below 180° C., thus in the solid state, is transformed into an inert, aprotic solvent with a passivating agent of the general formula Li[P(C2O4)?x/2Fx] where x=0, 2, or 4 is also disclosed.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: July 7, 2015
    Assignee: Chemetall GmbH
    Inventor: Ulrich Wietelmann
  • Patent number: 9068255
    Abstract: Provided is a zinc-plated steel sheet for hot pressing having outstanding surface characteristics, comprising: a steel foundation plate comprising a metal surface diffusion layer of which the Gibbs free energy reduction per mole of oxygen during oxidation is less than that of Cr; an aluminum-rich layer containing at least 30 wt. % of aluminum formed on the surface diffusion layer, and a zinc plating layer formed on the aluminum-rich layer. In this way, a metal having a low affinity for oxygen is coated to an effective thickness prior to annealing and thus the creation of annealing oxides at the surface of the steel sheet is suppressed and a uniform zinc plating layer is formed, and alloying of the zinc plating layer is promoted during press-processing heat treatment. Cracking in the steel foundation plate during hot press molding is prevented.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: June 30, 2015
    Assignee: POSCO
    Inventors: Il-Ryoung Sohn, Jong-Sang Kim, Joong-Chul Park, Yeol-Rae Cho, Jin-Keun Oh, Han-Gu Cho, Bong-Hoon Chung, Jong-Seog Lee
  • Patent number: 9062365
    Abstract: A method of manufacturing a metal part according to the present invention includes heating a shaped product of stainless steel to 600° C. or more in an oxygen-free atmosphere and heat-treating the shaped product in an oxygen atmosphere after the heating.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: June 23, 2015
    Assignee: NHK SPRING CO., LTD.
    Inventors: Ryuichi Kawatake, Takashi Maruyama
  • Patent number: 9057135
    Abstract: A method for protecting silver and silver alloy surfaces against tarnishing, characterized by initially subjecting the surface to be treated to cleaning pre-treatment in organic solvents; immersing the cleaned surface in an acid solution able to ensure formation of a thin layer of silver oxide; immersing the oxidized surface in a solution of at least one thiol of formula CH3(CH2)nSH where n is between 10 and 16; and chemically reacting the molecules of said thiol with the previously oxidized silver surface, in an environment containing water vapor at a temperature of at least 50° C.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: June 16, 2015
    Assignee: AGERE S.R.L.
    Inventor: Dario Narducci
  • Patent number: 9057124
    Abstract: The invention relates to a method for obtaining a surface of a titanium-based metal implant intended to be inserted into bone tissue, comprising: (a) projecting particles of aluminum oxide under pressure on the external area of the implant; (b) chemically treating the sandblasted external area of the implant with an acid composition comprising sulfuric acid and hydrofluoric acid; and (c) thermally treating the sandblasted external area of the implant by heating at a temperature of 200-450° C. for 15-120 min. The invention likewise defines a metal implant having said surface. The surface thus obtained has good micrometer-scale roughness with a suitable morphology, as well as a composition which is virtually free of impurities and a thickness which is approximately three times the thickness of conventional surfaces, which characteristics provide it with very good osseointegration properties.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: June 16, 2015
    Inventors: Francisco J. Garcia Saban, Juan Carlos Garcia Saban, Miguel Angel Garcia Saban
  • Patent number: 9045673
    Abstract: A binding agent includes 3-glycidyloxypropyltrimethoxysilane, ethanol, isopropyl alcohol, alkylphenol ethoxylate, acetic acid and sodium dodecylbenzenesulfonate. The surface treatment method using the binding agent and articles manufactured by the method is also provided.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: June 2, 2015
    Assignees: SHENZHEN FUTAIHONG PRECISION INDUSTRY CO., LTD., FIH (Hong Kong) Limited
    Inventors: Xu Liu, Da-Hua Cao
  • Patent number: 9039845
    Abstract: Aqueous compositions useful as pretreatments prior to painting and to prevent the formation of white rust in the uncoated condition include an organopolyphosphonic acid or salt thereof, an organosilane, and a trivalent chromium compound. A method for treating a surface of a zinc-containing metal includes contacting the surface with an aqueous composition including an organopolyphosphonic acid or salt thereof, an organosilane, and a trivalent chromium compound. The composition may also include an agent for reducing hydrophilicity, such as a polyacrylic acid. The aqueous composition has been found to be particularly well-suited for treating a zinc-containing metal to passivate the surface, improve paint adhesion, and/or improve corrosion resistance.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: May 26, 2015
    Assignee: Bulk Chemicals, Inc.
    Inventors: Ted M. Schlosser, Edward M. Musingo
  • Patent number: 9040168
    Abstract: The galvannealed steel sheet includes: a galvannealed layer formed on at least one surface of a steel sheet and contains includes an amount of 0.05 mass % to 0.5 mass % of Al, an amount of 6 mass % of 12 mass % of Fe, and the balance composed of Zn and inevitable impurities; and a mixed layer formed on a surface of the galvannealed layer and includes a composite oxide of Mn, Zn, and P and an aqueous P compound, wherein the composite oxide includes 0.1 mg/m2 to 100 mg/m2 of Mn, an amount of 1 mg/m2 to 100 mg/m2 of P, and Zn, and a P/Mn ratio is 0.3 to 50, and wherein the total size of an area of the mixed layer in which an attached amount of P is equal to or more than 20 mg/m2 is 20% to 80% of a surface area of the mixed layer.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: May 26, 2015
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kazuhiko Honda, Noriyuki Suzuki, Yoichi Ikematsu
  • Patent number: 9039958
    Abstract: A refractory well (16) for melting scrap metal pieces into a molten metal bath, comprises an inlet (18) for introducing metal into said well, the inlet being located so as to cause a circular flow of molten metal in said well, an outlet (19) for the flow of metal from said well and an electromagnetic pump (22) located beneath the refractory well for pumping said molten metal from said well through said outlet.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: May 26, 2015
    Inventors: Rifat A. Chalabi, Ophneil Henry Perry
  • Patent number: 9034117
    Abstract: A composition to decommission firearms is presented. The composition comprises a monomer, a quantity of calcium chloride; and sulfur-containing compound. The sulfur containing compound includes sodium persulfate and/or sodium thiosulfate.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: May 19, 2015
    Inventor: John L. Lombardi
  • Patent number: 9028667
    Abstract: A metal material is contacted with a treatment solution containing zirconium and/or titanium compound, and a polyamine compound having a number average molecular weight from 150 to 500,000 and containing from 0.1 mmol to 17 mmol of primary and/or secondary amino group per 1 g of solid content and at least one siloxane unit. Concentration of zirconium and/or titanium compound in the metal surface treatment composition is from 10 ppm to 10,000 ppm with respect to the metal element, and mass ratio of the zirconium and/or titanium element is from 0.1 to 100 with respect to the polyamine compound. The metal material is washed with water after contacted by the treatment solution.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: May 12, 2015
    Assignees: Nippon Paint Co., Ltd., Chemetall GmbH
    Inventors: Toshio Inbe, Thomas Kolberg
  • Patent number: 9005518
    Abstract: A refractory bottom lining for lining the bottom of a metallurgical vessel. The refractory bottom includes a stepped portion and an impact portion. The impact portion is formed of a first refractory material. The stepped portion is formed of a second refractory material and is disposed around the impact portion. The stepped portion includes an upper surface that has a plurality of discrete surface sections. The plurality of discrete surface sections includes an uppermost surface section, at least two intermediate surface sections and a lowermost surface section. Each surface section has a different elevation such that the uppermost surface section has a highest elevation and the lowermost surface section has a lowest elevation. The uppermost surface section, the at least two intermediate surface sections and the lowermost surface section define a continuously downward stepped path from the uppermost surface section to the lowermost surface section.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: April 14, 2015
    Assignee: North American Refractories Co.
    Inventors: Ronald Barrett, Donald Abrino
  • Patent number: 8999077
    Abstract: Provided is a chromium-free chemical conversion treatment technique that makes it possible to form a conversion layer excellent in corrosion resistance and appearance without using fluorine and hydrogen peroxide. The chemical conversion treatment liquid is for forming a conversion layer on zinc or zinc alloy and free of chromium, hydrogen peroxide and fluorine, includes 0.5 g/L to 38 g/L of magnesium, 0.5 g/L to 3.5 g/L of silicon, and 0.36 g/L or more of nitrate ion, contains the silicon as a water-soluble silicate, optionally further includes cobalt at a concentration of 5 g/L or less, and has an aluminum content of 0.08 g/L or less.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: April 7, 2015
    Assignees: Murata Co., Ltd., Morimura Bros., Inc.
    Inventors: Yusuke Ohtani, Megumi Sugioka, Takashi Hasegawa
  • Patent number: 8999076
    Abstract: In one embodiment, the invention provides a composition useful for passivating a metal surface, in particular a zinciferous surface, comprising, preferably consisting essentially of, most preferably consisting of water and: (A) dissolved phosphate ions; (B) dissolved trivalent chromium ions; (C) dissolved anions of at least one complex fluoride of an element selected from the group consisting of Ti, Zr, Hf, Si, Sn, Al, Ge and B; preferably Ti, Si and/or Zr; (D) an optional component of dissolved free fluoride ions; (E) organic acid inhibitor, preferably comprising quaternary ammonium compounds; and, optionally (F) a pH adjusting component; and optionally organic hydroxyl acids.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: April 7, 2015
    Assignee: Henkel AG & Co. KGaA
    Inventors: David R. McCormick, Thomas W. Cape
  • Patent number: 8992696
    Abstract: A method of bonding a metal to a substrate involves forming a plurality of nano-features in a surface of the substrate, where each nano-feature is chosen from a nano-pore and/or a nano-crevice. In a molten state, the metal is over-cast onto the substrate surface, and penetrates the nano-features. Upon cooling, the metal is solidified inside the nano-features, where the solidification of the metal forms a mechanical interlock between the over-cast metal and the substrate.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: March 31, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Michael J. Walker, Bob R. Powell, Jr., Aihua A. Luo
  • Patent number: 8986467
    Abstract: A method for passivating metallic surfaces, wherein the surface is contacted with an aqueous composition comprising at least one water-soluble polymer (X) comprising acidic groups and with at least one surfactant (T) based on alkoxylated alcohols, the pH of the composition being in the range from 0.5 to 5, enables durable protection of the surface.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: March 24, 2015
    Assignee: BASF SE
    Inventors: Guido Vandermeulen, Achim Fessenbecker, Bernd Laubusch, Helmut Witteler, Jürgen Tropsch
  • Patent number: RE45612
    Abstract: A corrosion-inhibiting composition for application to a metal substrate, such as aluminum or steel, and in connection with a paint, and the synthesis of the composition. The active inhibitor constituent of the composition can be selected from the group consisting of 2,5-dimercapto-1,3,4 thiadiazole (DMTD), 2,4-dimercapto-s-triazolo-[4,3-b]-1,3-4-thiadiazole, trithiocyanuric acid (TMT), and derivatives of DMTD and TMT, including various N— or S— and N, N—, S— and N—,S-substituted derivatives of DMTD, including salts of DMTD of the general formula: M(DMTD)n, where n=1,2 or 3, and M is a metal cation and preferably M=Zn(II), Bi(III), Co(II), Ni(II), Cd(II), Pb(II), Ag(I), Sb(III), Cu(II), Li(I), Ca(II), Sr(II), Mg(II), La(III), Ce(III), Pr(III), Al(III) or Zr(IV). DMTD, TMT, and their derivatives may also be combined with phosphates, molybdates, borates, silicates, tungstates, phosphotungstates, phosphomolybdates, cyanamides, carbonates, SiO2 and mixtures thereof.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: July 14, 2015
    Assignee: MD FIFTH WARD PROPERTIES, INC.
    Inventor: John Sinko