Patents Examined by Lois Zheng
  • Patent number: 8529709
    Abstract: A method of reducing the formation of electrically resistive scale on a an article comprising a silicon-containing ferritic stainless subjected to oxidizing conditions in service includes, prior to placing the article in service, subjecting the article to conditions under which silica, which includes silicon derived from the steel, forms on a surface of the steel. Optionally, at least a portion of the silica is removed from the surface to placing the article in service. A ferritic stainless steel alloy having a reduced tendency to form silica on at least a surface thereof also is provided. The steel includes a near-surface region that has been depleted of silicon relative to a remainder of the steel.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: September 10, 2013
    Assignee: ATI Properties, Inc.
    Inventor: James M. Rakowski
  • Patent number: 8512484
    Abstract: A passivating agent for metallic surfaces of workpieces or casting molds includes an aqueous phosphate solution with metal ions and a gelatin.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: August 20, 2013
    Assignees: KS Aluminium-Technologie GmbH, Gelita AG
    Inventors: Manfred Laudenklos, Stephan Beer, Matthias Reihmann
  • Patent number: 8506728
    Abstract: In a process which is before a treatment process of forming a chemical conversion, TiO2 fine particles as an electron releasing-related substance (electron releasing substance) are attached onto a surface of a vehicle body. Then, a chemical conversion treatment is applied to the vehicle body having the TiO2 fine particles attached thereto. Thereby, an energy band gap of a finally-formed chemical conversion film can be smaller than that of a chemical conversion film formed by using only a chemical conversion treatment agent. Accordingly, the number of electrons (free electrons) which can be supplied onto the surface of a chemical conversion film can be increased during a voltage application in an electrodeposition coating process, and reducing reaction at a cathode can be promoted.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: August 13, 2013
    Assignee: Mazda Motor Corporation
    Inventors: Daiji Katsura, Tsutomu Shigenaga
  • Patent number: 8496762
    Abstract: A method of preparing an aluminum or aluminum alloy substrate to accept an adherent coating thereon is provided. The method includes the steps of degreasing the substrate, deoxidizing the substrate, and providing a prepaint conversion coating on the degreased and deoxidized substrate. The prepaint conversion coating composition comprises i) a source of fluoride ions; ii) a source of zirconium ions; iii) an acrylic resin; and iv) an optical brightener and forms a colorless, chromium-free conversion coating on the aluminum substrate that can be observed by exposing the treated substrate to UV light.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: July 30, 2013
    Inventors: Roberto Zoboli, Sara Salsa, Massimo Garzone
  • Patent number: 8491729
    Abstract: Disclosed is a method for providing an anti-corrosion protective coating to a metal substrate that uses a coating composition comprising a resin and a polyfunctional bridging molecule to both bind to the resin and to chelate the bound polymeric resin directly to the metal substrate. One category of polyfunctional bridging molecules preferably includes at least one amine function to bind to a resin and at least one carboxylate, thiol, silane, phenolate, acetoacetonate, imine, phosphate, or phosphonate function to chelate to a metal substrate. It is theorized that the amine function can bind to certain pendent chains in coating resins through a Michael addition reaction while the carboxylate, thiol, silane, phenolate, acetoacetonate, imine, phosphate, or phosphonate functions chelate to the metal substrate. These polyfunctional bridging molecules provide an organic binding of the resin to the metal substrates.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: July 23, 2013
    Assignee: Henkel AG & Co. KGaA
    Inventors: Brian D. Bammel, Thomas S. Smith, II
  • Patent number: 8486203
    Abstract: Aqueous acidic coating solutions containing a water soluble divalent zinc compound, a complex fluoride compound, and an organic inhibitor for improving the corrosion resistance and adhesive bonding characteristics of aluminum, aluminum alloys, anodic coatings and sacrificial coatings, are disclosed. Suitable organic inhibitors include oximes, such as salicylaldoxime, and/or quinolines, particularly 8-hydroxyquinoline, and mixtures thereof.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: July 16, 2013
    Assignee: Metalast International, Inc.
    Inventor: Alp Manavbasi
  • Patent number: 8470102
    Abstract: The invention deals with a process for manufacturing a hot-dip galvanized or galvannealed steel sheet having a TRIP microstructure, said process comprising the steps consisting in: -providing a steel sheet whose composition comprises, by weight: 0.01?C?0.22%, 0.50?Mn?2.0%, 0.2?Si?2.0%, 0.005?Al?2.0%, Mo<1.0%, Cr?1.0%, P<0.02%, Ti?0.20%, V?0.40%, Ni?1.0%, Nb?0.20%, the balance of the composition being iron and unavoidable impurities resulting from the smelting, -oxidizing said steel sheet in a direct flame furnace where the atmosphere comprises air and fuel with an air-to-fuel ratio between 0.80 and 0.95, so that a layer of iron oxide having a thickness from 0.05 to 0.2 ?m is formed on the surface of the steel sheet, and an internal oxide of Si and/or Mn and/or Al is formed, -reducing said oxidized steel sheet, at a reduction rate from 0.001 to 0.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: June 25, 2013
    Assignee: ArcelorMittal France
    Inventors: Florence Bertrand, Didier Huin, Hubert Saint-Raymond
  • Patent number: 8470097
    Abstract: A method of providing sulfidation corrosion resistance and corrosion induced fouling resistance to a heat transfer component surface includes providing a silicon containing steel composition including an alloy and a Si-partitioned non-metallic film formed on a surface of the alloy. The alloy is formed from the composition ?, ?,and ?, in which ? is a metal selected from the group consisting of Fe, Ni, Co, and mixtures thereof, ? is Si, and ? is at least one alloying element selected from the group consisting of Cr, Al, Mn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Sc, La, Y, Ce, Ru, Rh, Ir, Pd, Pt, Cu, Ag, Au, Ga, Ge, As, In, Sn, Sb, Pb, B, C, N, P, O, S and mixtures thereof. The Si-partitioned non-metallic film comprises at least one of sulfide, oxysulfide and mixtures thereof.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: June 25, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: ChangMin Chun, Mark A Greaney, Thomas Bruno, Ian A Cody, Trikur A Ramanarayanan, LeRoy A Clavenna
  • Patent number: 8469243
    Abstract: Provided is a molten metal discharge nozzle capable of suppressing turbulence in a molten metal stream passing through an inner bore thereof, with a simple structure. A cross-sectional shape of a wall surface of the inner bore, taken along an axis of the inner bore, comprises a part or an entirety of a curved line expressed by the following formula: log(r(z))=(1/n)×log((Hc+L)/(Hc+z))+log(r(L)) (1), where: 6?n?1.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: June 25, 2013
    Assignee: Krosakiharima Corporation
    Inventors: Arito Mizobe, Hideaki Kawabe, Manabu Kimura
  • Patent number: 8465599
    Abstract: A method of providing sulfidation corrosion resistance and corrosion induced fouling resistance for a heat transfer component is disclosed. The heat transfer component includes a heat exchange surface formed from a chromium-enriched oxide containing material formed from the composition ?, ?, and ?, wherein ? is a steel containing at least about 5 to about 40 wt. % chromium, ? is a chromium enriched oxide (M3O4 or M2O3 or mixtures thereof) formed on the surface of the steel ?, wherein M is a metal containing at least 5 wt. % Cr based on the total weight of the metal M, and ? is a top layer formed on the surface of the chromium-enriched oxide ?, comprising sulfide, oxide, oxysulfide, and mixtures thereof. The top layer ? comprises iron sulfide (Fe1-xS), iron oxide (Fe3O4), iron oxysulfide, iron-chromium sulfide, iron-chromium oxide, iron-chromium oxysulfide, and mixtures thereof.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: June 18, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: ChangMin Chun, Mark A. Greaney, Thomas Bruno, Ian A. Cody, Trikur A. Ramanarayanan
  • Patent number: 8449695
    Abstract: A method of preparing an aqueous composition of a chromium III compound, comprising adding hydrogen peroxide to a mixture comprising water and a chromium VI compound in the presence of at least one acid according to the formula H2GF6, in which G is a Group IV-B element. The composition may contain less than 500 ppm of alkali metal ions and less than 200 ppm of halide ions, relative to chromium and may test negative for chromium VI using s-diphenylcarbazide. The composition may be used for treating a metal surface, among other applications.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: May 28, 2013
    Assignee: Bulk Chemicals, Inc.
    Inventor: José B. Rivera
  • Patent number: 8444775
    Abstract: Shape Memory Alloy tube is protected from damage during drawing, caused by galling-type interaction between the tube and high-carbon dies, by forming an oxide surface layer. This invention protects the tube internal diameter from oxidation while allowing the tube outside diameter to be oxidized, by using an oxygen getter located within the tube during the oxidation step. The method yields a higher quality internal diameter and improves productivity.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: May 21, 2013
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Edwin Alfred Crombie, III, William Andrew Hochella
  • Patent number: 8444028
    Abstract: In a jetting device for ejecting droplets of a relatively hot fluid, a fluid chamber body is made of a heat resistant material and an inner surface of the fluid chamber body, the inner surface defining a fluid chamber of the jetting device, is wettable by the fluid. This configuration provides that no additional force needs to be applied for forcing the fluid into an orifice, i.e. a narrow tube leading towards a nozzle.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: May 21, 2013
    Assignee: Oce-Technologies B.V.
    Inventors: Mircea V. Rasa, Ronald Berkhout, Wilhelmus P. J. Classens, Henricus C. M. Van Genuchten, Evgenij V. Kuznetsov
  • Patent number: 8435360
    Abstract: The invention relates to a method for producing a coating layer protecting against corrosion wherein a surface which is to be treated is brought into contact with an aqueous treatment solution containing chromium(III) ions and at least one phosphate compound, wherein the ratio of the molar concentration of the chromium(III) ions to the molar concentration of the at least one phosphate compound (calculated as orthophosphate) lies between 1:1.5 and 1:3. The method improves the corrosion protection of metallic, in particular, zinc-containing, surfaces provided with conversion layers. The decorative and functional properties of the surface are maintained or improved. Furthermore, the known problems resulting from the use of chromium(VI)-containing compounds or from post-treatments with polymer dispersions are avoided.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: May 7, 2013
    Assignee: Atotech Deutschland GmbH
    Inventors: Björn Dingwerth, Andreas Noack
  • Patent number: 8430973
    Abstract: The present invention relates to a process for improving the heat and corrosion resistance of stainless steel by means of a novel passivation process. This process comprises a chemical treatment with an aqueous solution comprising a complexing agent combination of at least one oxidant, a subsequent rinsing and a subsequent treatment at elevated temperature in an oxygen-containing atmosphere. The stainless steel surfaces obtained according to the invention have a homogeneous passive layer having increased chemical resistance and resistance to thermal discoloration.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: April 30, 2013
    Assignee: Poligrat GmbH
    Inventors: Olaf Böhme, Siegfried Piesslinger-Schweiger
  • Patent number: 8430972
    Abstract: A metal surface treatment composition including at least one compound selected from the group consisting of a zirconium compound and a titanium compound, and an organosiloxane, which is a polycondensate of organosilane and has in a molecule thereof of at least two amino groups, in which the Degree of polycondensation of the organosiloxane is at least 40%, the content of at least one compound selected from the group consisting of the zirconium compound and the titanium compound is predetermined content, the content of the organosiloxane in the metal surface treatment composition is predetermined content, and the mass ratio of at least one element selected from the group consisting of the zirconium element and the titanium element contained in the zirconium compound and the titanium compound, respectively, to the silicon element contained in the organosiloxane is a predetermined ratio.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: April 30, 2013
    Assignees: Nippon Paint Co., Ltd., Chemetall GmbH
    Inventors: Toshio Inbe, Thomas Kolberg
  • Patent number: 8425693
    Abstract: A method of preparing an aqueous composition of a chromium III compound, comprising adding hydrogen peroxide to a mixture comprising water and a chromium VI compound in the presence of at least one acid according to the formula H2GF6, in which G is a Group IV-B element. The composition may contain less than 500 ppm of alkali metal ions and less than 200 ppm of halide ions, relative to chromium and may test negative for chromium VI using s-diphenylcarbazide. The composition may be used for treating a metal surface, among other applications.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: April 23, 2013
    Assignee: Bulk Chemicals, Inc.
    Inventor: José B. Rivera
  • Patent number: 8425692
    Abstract: A composition for forming a protective coating on a metal surface includes water; Cr2(GF6)3 in which G is a Group IV-B element; and at least one polymer having a plurality of carboxylic acid groups and at least one polymer having a plurality of hydroxyl groups, and/or at least one polymer having a plurality of both carboxylic acid and hydroxyl groups; wherein the composition contains less than 500 ppm of alkali metal ions and less than 200 ppm of halide ions relative to chromium. A method of forming a protective coating on a metal surface includes contacting the metal surface with the composition.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: April 23, 2013
    Assignee: Bulk Chemicals, Inc.
    Inventors: José B. Rivera, Richard J. Church
  • Patent number: 8425694
    Abstract: A process for producing a ceramic implant which is structured on the surface at least in the region in contact with bone and/or tissue is described. The process is characterized in that the ceramic implant after shaping and sintering is, in the region to be structured, I. reduced to the corresponding metal on the surface; II. the essentially metallic surface is subsequently subjected to a structuring surface treatment; III. the structure surface is oxidized. Furthermore, implants which have been provided with a topological structure on the surface by means of this process are described.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: April 23, 2013
    Assignee: Thommen Medical AG
    Inventors: Luis Alfonso Ortega Cruz, Falko Schlottig
  • Patent number: 8419866
    Abstract: A novel method of manufacturing a transition metal oxide having a spinel structure is provided. A mixture of powdery metals of metal elements constituting the transition metal oxide is heated in an oxidizing atmosphere to generate the transition metal oxide.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: April 16, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Takashi Ryu, Toshiyuki Nakamura, Makoto Ohmori