Patents Examined by Luan Van
  • Patent number: 9063073
    Abstract: A working electrode for cyclic voltammetry experiments and the like provides an electrode carrier releasably attaching to replaceable tips each holding a solid working electrode material that may be polished for receipt of a reactant material and which electrically connects to an electrode in the electrode carrier when the tip and carrier are connected.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: June 23, 2015
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Sundaram Gunasekaran, Jiang Yang
  • Patent number: 9063079
    Abstract: An electrochemical gas sensor includes an electrolyte including at least one ionic liquid which includes an additive portion including at least one organic additive, at least one organometallic additive or at least one inorganic additive.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: June 23, 2015
    Assignee: MSA Europe GmbH
    Inventors: Rolf Eckhardt, Martin Weber, Kathrin Keller, Kathrin Tölle, Ralf Warratz
  • Patent number: 9051656
    Abstract: An aryl-alkyl (R—Ar) hydrocarbon is prepared by an electrosynthesis process in an electrolytic cell having an alkali ion conductive membrane positioned between an anolyte compartment configured with an anode and a catholyte compartment configured with a cathode. An anolyte solution containing an alkali metal salt of an alkyl carboxylic acid and an aryl compound is introduced into the anolyte compartment. The aryl compound may include an alkali metal salt of an aryl carboxylic acid, an arene (aromatic) hydrocarbon, or an aryl alkali metal adduct (Ar?M+). The anolyte solution undergoes electrolytic decarboxylation to form an alkyl radical. The alkyl radical reacts with the aryl compound to produce the aryl-alkyl hydrocarbon.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: June 9, 2015
    Assignee: CERAMATEC, INC.
    Inventors: Sai Bhavaraju, Mukund Karanjikar, Pallavi Chitta
  • Patent number: 9045834
    Abstract: This invention relates to a sacrificial anode, comprising: a first layer of a first material; and, a second layer of a second material which is electrically connected to the first layer, wherein the first material is more anodic with respect to a galvanic series than the second material. The invention also relates to a body including the sacrificial anode.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: June 2, 2015
    Assignee: ROLLS-ROYCE PLC
    Inventor: Alexis Lambourne
  • Patent number: 9045790
    Abstract: An analysis device is disclosed which includes an electron detection medium to obtain information needed for analyzing an analyte in correlation with an electron transfer level, and a reagent part which is disposed on the electron detection medium and includes an electron transporting substance to transport electrons between the analyte and the electron detection medium, the electron transporting substance including a water-soluble aromatic heterocycle compound, and being free of a metal complex. An analysis method using the analysis device is also disclosed.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: June 2, 2015
    Assignee: ARKRAY, Inc.
    Inventor: Masashi Tsukada
  • Patent number: 9034170
    Abstract: Electrode configurations for electric-field enhanced performance in catalysis and solid-state devices involving gases are provided. According to an embodiment, electric-field electrodes can be incorporated in devices such as gas sensors and fuel cells to shape an electric field provided with respect to sensing electrodes for the gas sensors and surfaces of the fuel cells. The shaped electric fields can alter surface dynamics, system thermodynamics, reaction kinetics, and adsorption/desorption processes. In one embodiment, ring-shaped electric-field electrodes can be provided around sensing electrodes of a planar gas sensor.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: May 19, 2015
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Bryan M. Blackburn, Eric D. Wachsman, Frederick Martin Van Assche, IV
  • Patent number: 9034172
    Abstract: An electrochemical test sensor for detecting the concentration of an analyte in a fluid sample. The electrochemical test sensor includes a housing that has a first end and a second opposing end. The housing includes an opening at the first end to receive a fluid test sample. An electrode assembly includes a substrate, a working electrode, a counter electrode and a reagent. The substrate has a first surface and an opposing second surface. The working electrode is disposed on the first surface of the substrate, and the counter electrode is disposed on the second surface of the substrate. The electrode assembly is positioned within the housing to define a reaction channel. The electrochemical test sensor may be used with a removable lancet mechanism or integrated within a lancet mechanism to form one integral unit.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: May 19, 2015
    Assignee: BAYER HEALTHCARE LLC
    Inventors: Yuan Wang, Raeann Gifford, Hualin Jiang, Jeffery S. Reynolds, Jianfeng Fei
  • Patent number: 9034169
    Abstract: The method for detection of cyanide in water is a method for the detection of a highly toxic pollutant, cyanide, in water using ZnO2 nanoparticles synthesized locally by an elegant Pulsed Laser Ablation technique. ZnO2 nanoparticles having a median size of 4 nm are synthesized from pure zinc metal target under UV laser irradiation in a 1-10% H2O2 environment in deionized water. The synthesized ZnO2 nanoparticles are suspended in dimethyl formamide in the presence of Nafion, and then ultrasonicated to create a homogenous suspension, which is used to prepare a thin film of ZnO2 nanoparticles on a metal electrode. The electrode is used for cyanide detection.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: May 19, 2015
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Mohammed Ashraf Gondal, Qasem Ahmed Qasem Drmosh, Z. H. Yamani, Tawfik Abdo Saleh
  • Patent number: 9034160
    Abstract: A sensor system, device, and methods for determining the concentration of an analyte in a sample is described. Input signals including multiple duty cycles of sequential excitation pulses and relaxations are input to the sample. One or more signals output from the sample within 300 ms of the input of an excitation pulse may be correlated with the analyte concentration of the sample to improve the accuracy and/or precision of the analysis. Determining the analyte concentration of the sample from these rapidly measured output values may reduce analysis errors arising from the hematocrit effect, mediator background, and other error sources.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: May 19, 2015
    Assignee: Bayer HealthCare LLC
    Inventor: Huan-Ping Wu
  • Patent number: 9034158
    Abstract: A sensor cartridge for supplying a sensor is used. The sensor cartridge includes a casing within which the plurality of sensors can be arranged, and that allows a sample to be introduced to a sensor located at a preset location, and a connection structure. The connection structure electrically connects an external device and a sensor electrode of the sensor located at the preset location. The casing is formed so as to be held by the external device when the external device and the sensor electrode of the sensor are electrically connected via the connection structure.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: May 19, 2015
    Assignee: ARKRAY, Inc.
    Inventor: Shinichi Watanabe
  • Patent number: 9028668
    Abstract: For use for a circuit board where a through hole and a blind via hole co-exist, an electrolytic copper plating bath in which the covering power for the through hole and the plugging performance for the blind via hole are sufficient, and an electroplating method that uses the electrolytic copper plating bath, are disclosed. The electrolytic copper plating bath is mainly composed of a water-soluble copper salt, sulfuric acid and chloride ions. A polyamide polyamine, obtained on processing by heating of an epichlorohydrin modified product of a polycondensation product of diethylene triamine, adipic acid and ?-caprolactam, is contained in the bath as a leveler.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: May 12, 2015
    Assignee: C. Uyemura & Co., Ltd
    Inventors: Toshihisa Isono, Naoyuki Omura, Koji Shimizu, Shinji Tachibana
  • Patent number: 9023186
    Abstract: A method of manufacturing an electrode includes: providing a metal foil; depositing titanium metal on the metal foil; masking the titanium metal surface to control the density of sites where anodization will occur; and anodizing the Ti/metal foil so as to produce a nano-porous titania dielectric on the surface of the anode. The process may be on only one surface of the metal foil or on both sides simultaneously. The metal foil may be an aluminum foil. The porous titania dielectric may comprise titania nanotubes. An electrode structure may be fabricated using a linear process tool for reel-to-reel processing of a metal foil, the tool may include: a titanium deposition station for depositing a uniform thin film of titanium on the surface of the metal foil; a masking station for modifying the titanium surface to control the density of sites where anodization will occur; and an anodization station for transforming the Ti thin film into a porous titania dielectric film.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: May 5, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Nag B. Patibandla, Lu Yang
  • Patent number: 9023187
    Abstract: A method for electroplating titanium alloy coating into plastic and carbon foam comprises the steps of activating the given specimen, deposition of electroless nickel and electroplating process of titanium alloy to the surface of the specimen. The electroplating process of electroplating titanium alloy coating includes a direct current method and a pulse plating method. The direct current method characterized by lager sized grains and the pulse plating method characterized by smaller sized grains. The advantages of proposed electroplating processes are: a) low cost, b) very broad applications and c) relatively low number of the process steps. Unique combination of physical, mechanical and chemical properties makes the electroplating methods of titanium coating an attractive technology for medicine, biotechnology, sports, defense, aeronautic, and auto industries.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: May 5, 2015
    Assignee: Crista Chemical Company LLC
    Inventors: Margaret E Parker, Piotr Cieplak, Barbara Gorecka
  • Patent number: 9017531
    Abstract: The invention relates to a tool for galvanically coating sliding bearings comprising at least one cover, to which a thief is attached.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: April 28, 2015
    Assignee: Federal-Mogul Wiesbaden GmbH
    Inventors: Hans-Ulrich Huhn, Axel Rothe
  • Patent number: 9017540
    Abstract: Systems and methods for reducing overhang on electroplated surfaces of printed circuit boards are described. One such method includes applying a first resist layer on a substrate having a first copper layer, applying a first image to the first resist layer, developing the first resist layer in accordance with the first image, applying a second copper layer on the first copper layer, electroplating a first metallic layer on the second copper layer, removing the first resist layer, etching a portion of the first copper layer, removing the first metallic layer, depositing a third copper layer on a surface of the assembly, applying a second resist layer on the third copper layer, applying a second image to the second resist layer, developing the second resist layer in accordance with the second image, electroplating a preselected metal layer on the third copper layer, removing the second resist layer, and etching a portion of the third copper layer.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: April 28, 2015
    Assignee: Viasystems Technologies Corp. L.L.C.
    Inventors: Rajwant S. Sidhu, Ruben A. Zepeda, Carlos A. Lopez
  • Patent number: 9017532
    Abstract: An electroplating system and components thereof facilitate an efficient electroplating process which in part reduces or eliminates the number of clips used on electroplating racks. Some electroplating racks may use skewers on which multiple plastic pieces are typically mounted. The plastic pieces may also be configured to be joined to form an assembly which is mounted on an electroplating rack. The configurations help reduce the time spent loading and unloading pieces on the racks.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: April 28, 2015
    Inventors: Bradley A. Wright, Rudy M. Koehler
  • Patent number: 9011658
    Abstract: The present invention relates to a sampling plate. In particular the invention relates to a sampling plate for measuring certain selected properties of a liquid sample, such as the glucose levels in a blood sample. Sampling plates of the present invention have a sample zone (20) for receiving a liquid sample and an overflow reservoir (26) linked to the sample zone (20) via an overflow channel (26a), so that excess blood sample can be redirected away from the sample zone (20) and contained.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: April 21, 2015
    Assignee: Jabil Circuit (Singapore) Pte, Ltd.
    Inventor: Matthew Robert Bryan
  • Patent number: 9011670
    Abstract: An electronic device includes a substrate and a plurality of sensors. Each sensor is disposed in a well over the substrate and includes a working electrode, an inner filling solution disposed thereover, and an ion-selective membrane. The working electrode is in contact with the substrate and the ion-selective membrane is disposed over the inner filling solution and substantially seals the well.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: April 21, 2015
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: James A. Bickford, John R. Williams, Daniel I. Harjes, Andrew Reiter
  • Patent number: 9005423
    Abstract: Communications systems are provided for use with an impressed current cathodic protection (ICCP) system having single or multiple ICCP components. A pipeline may be provided by connecting multiple pipeline sections together as an integrated pipeline where each section has an associated ICCP system. A communications signal comprising an AC signal is impressed on the pipeline and received by receivers associated with power supplies associated with each ICCP system. Upon reception of the AC signal, a controllable switch is operated within the power supplies to synchronously disconnect them from their power source and thereby enable accurate testing of the ICCP system.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: April 14, 2015
    Assignee: Itron, Inc.
    Inventor: Barry Cahill-O'Brien
  • Patent number: 8999137
    Abstract: A method of protecting a metal section in concrete. The method comprises the steps of providing a sacrificial anode and embedding the sacrificial anode in a porous matrix in the cavity; providing a source of DC power with positive and negative connections and electrically connecting one of the connections of the source of DC power to the metal section to be protected; electrically connecting the a sacrificial anode in series with the other connection of the source of DC power and spacing the source of DC power from the cavity and the connections to the source of DC power which comprise at least one of wires and cables; and driving an anode current density from the sacrificial anode in excess of 500 mA/m2. An apparatus of protecting a metal section in concrete is also disclosed.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: April 7, 2015
    Inventors: Gareth Kevin Glass, Adrian Charles Roberts, Nigel Davison