Patents Examined by Luan Van
  • Patent number: 8999138
    Abstract: The present invention includes an anodic device for reducing corrosion adapted to reduce corrosion of an object subject to corrosion having a base with a thickness and surface area, and a plurality of protrusions protruding from the base each having a thickness and surface area, wherein the device is configured to allow a current to flow between the device and the object subject to corrosion. The present invention also includes methods associated with the use of such devices.
    Type: Grant
    Filed: November 25, 2011
    Date of Patent: April 7, 2015
    Assignee: RGF Environmental Group, Inc.
    Inventor: Walter B. Ellis
  • Patent number: 8986524
    Abstract: A nanodevice includes a reservoir filled with conductive fluid and a membrane separating the reservoir. A nanopore is formed through the membrane having electrode layers separated by insulating layers. A certain electrode layer has a first type of organic coating and a pair of electrode layers has a second type. The first type of organic coating forms a motion control transient bond to a molecule in the nanopore for motion control, and the second type forms first and second transient bonds to different bonding sites of a base of the molecule. When a voltage is applied to the pair of electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels via the first and second transient bonds formed to be measured as a current signature for distinguishing the base. The motion control transient bond is stronger than first and second transient bonds.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: March 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Stefan Harrer, Binquan Luan, Hongbo Peng, Stephen M. Rossnagel, Ajay K. Royyuru, Gustavo A. Stolovitzky, Philip S. Waggoner
  • Patent number: 8986529
    Abstract: Improved electrophoretic analysis is provided by interaction of anionic and cationic isotachophoresis (ITP) shock waves that propagate toward each other, and analysis of the resulting interaction zones. These shock wave interactions can provide qualitatively different capabilities from conventional ITP methods. Shock wave interaction can enable a single assay to identify analyte and quantify its concentration via isotachophoretic focusing followed by separation of the concentrated analytes via electrophoresis, without any mid-assay alteration of the externally imposed experimental conditions (i.e., no switching, valve operation, etc. during the measurement). As another example, shock wave interaction can enable a single assay to provide coupled ITP processes with different electrolyte concentrations (as in cascade-ITP) in a single simple system (again, without any mid-assay alteration of the externally imposed experimental conditions).
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: March 24, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Juan G. Santiago, Robert D. Chambers, Supreet Singh Bahga
  • Patent number: 8986521
    Abstract: Disclosed is a segmented contact bar for use boarding an electrolytic cell. The segmented contact bar has contact pieces made of electrically conductive material and being in spaced apart relation along the capping board, each of the contact pieces defining a segment for supporting and electrically connecting an anode and a cathode in the electrolytic cell. The segmented contact bar also has connection members including an insulating material and provided in between pairs of adjacent segments for providing insulating interconnection of the segments. There is also an electrolytic refining apparatus including adjacent electrolytic cells; a capping board positioned on the adjacent electrolytic cells; anodes and cathodes extending in spaced apart alternate positions into the each of the adjacent electrolytic cells along the capping boards; and a segmented contact bar.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: March 24, 2015
    Assignee: Pultrusion Technique Inc.
    Inventor: Robert P. Dufresne
  • Patent number: 8986526
    Abstract: The invention is directed to enzyme immobilization compositions comprising: one or more enzymes, a humectant, an acrylic-based monomer, a water-soluble organic photo-initiator and a water-soluble acrylic-based cross-linker in a substantially homogeneous aqueous mixture. The invention is also directed to methods for forming sensors comprising such compositions and to apparati for forming arrays of immobilized layers on an array of sensors by dispensing such compositions onto a substrate.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: March 24, 2015
    Assignee: Abbott Point of Care Inc.
    Inventors: Gordon Bruce Collier, Jason Andrew Macleod, Anjulia Wong, Attila Csaba Nemeth
  • Patent number: 8974651
    Abstract: The present invention discloses apparatuses and methods for the visualization of fluorophores in biological systems such as electrophoresis gels and cell cultures. Preferred embodiments of the apparatuses consists of a tray or tank having one or more light sources disposed to direct light through an electrophoresis gel disposed within the vessel such that the luminescence from fluorophores in the gel are easily visualized.
    Type: Grant
    Filed: April 17, 2011
    Date of Patent: March 10, 2015
    Assignee: C.C. IMEX
    Inventors: Richard Chan, Winston Glenn Walker, Rita M. Wong, Jason In
  • Patent number: 8974658
    Abstract: An exemplary embodiment of the invention may include a method for electrochemically monitoring the mobility of particles in a fluid in response to an external field, the method may include monitoring an electrical characteristic of the fluid in an electrochemical cell, the fluid comprising particles that can be moved under the influence of an externally applied field; observing changes in the electrical characteristic caused by particle movement induced by the external field; and inferring a change in the physical state of the fluid from a change in the magnitude of the electrical characteristic observed.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: March 10, 2015
    Assignee: Universal Biosensors Pty Ltd
    Inventors: Peter Michael Newman, Ronald Christopher Chatelier
  • Patent number: 8974652
    Abstract: Disclosed are apparatuses, systems, and methods for programmable fluidic processors. In one embodiment, the invention involves manipulating droplets across a reaction surface of the processor substantially contact-free of any surfaces. The reaction surface and the electrodes of the processor may include a coating repelling the droplets. Further, the present invention provides for a suitable suspending medium for repelling droplets away from fixed surfaces.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: March 10, 2015
    Assignee: Board of Regents, The University of Texas System
    Inventors: Peter R. C. Gascoyne, Jody Vykoukal, Jon Schwartz
  • Patent number: 8968542
    Abstract: Devices and methods for performing dielectrophoresis are described. The devices contain sample channel which is separated by physical barriers from electrode channels which receive electrodes. The devices and methods may be used for the separation and analysis of particles in solution, including the separation and isolation of cells of a specific type. As the electrodes do not make contact with the sample, electrode fouling is avoided and sample integrity is better maintained.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: March 3, 2015
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Rafael V. Davalos, Hadi Shafiee, Michael B. Sano, John L. Caldwell
  • Patent number: 8968541
    Abstract: An improved staining method is described for staining a biopolymer such as a peptide, a protein, an RNA, a DNA, an oligosaccharide or a complex containing a peptide, a protein, an RNA, a DNA, or an oligosaccharide in a matrix. The method includes the step of moving a staining reagent into the matrix using an electric force. The staining time can be dramatically reduced relative to conventional technologies. The improved staining method can particularly be used, for example, to stain proteins after gel separation. Other related methods and related kits are also described.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: March 3, 2015
    Assignee: Nanjingjinsirui Science & Technology Biology Corp.
    Inventors: Zhuying Wang, Jinyu Yang, Fanli Meng, Bing Lai, Zhan Dai, Fang Liang Zhang
  • Patent number: 8968549
    Abstract: Cathodic protection of steel in concrete is provided by locating an anode assembly including both a sacrificial anode and an impressed current anode in contact with the concrete and providing an impressed current from a power supply to the anode. The impressed current anode forms a perforated sleeve surrounding a rod of the sacrificial anode material with an activated ionically-conductive filler material between. The system can be used without the power supply in sacrificial mode or when the power supply is connected, the impressed current anode can be powered to provide an impressed current system and/or to recharge the sacrificial anode from sacrificial anode corrosion products.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: March 3, 2015
    Assignee: Vector Corrosion Technologies Ltd.
    Inventors: George Sergi, Attanayake Mudiyanselage Gamini Seneviratne, David Whitmore
  • Patent number: 8961774
    Abstract: Methods and systems for electrochemical production of butanol are disclosed. A method may include, but is not limited to, steps (A) to (D). Step (A) may introduce water to a first compartment of an electrochemical cell. The first compartment may include an anode. Step (B) may introduce carbon dioxide to a second compartment of the electrochemical cell. The second compartment may include a solution of an electrolyte, a catalyst, and a cathode. Step (C) may apply an electrical potential between the anode and the cathode in the electrochemical cell sufficient for the cathode to reduce the carbon dioxide to a product mixture. Step (D) may separate butanol from the product mixture.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: February 24, 2015
    Assignee: Liquid Light, Inc.
    Inventors: Emily Barton Cole, Kyle Teamey, Andrew B. Bocarsly, Narayanappa Sivasankar
  • Patent number: 8961746
    Abstract: Cathodic protection of steel in concrete is provided by locating an anode assembly including both a sacrificial anode and an impressed current anode in contact with the concrete and providing an impressed current from a power supply to the anode. The impressed current anode forms a perforated sleeve surrounding a rod of the sacrificial anode material with an activated ionically-conductive filler material between. The system can be used without the power supply in sacrificial mode or when the power supply is connected, the impressed current anode can be powered to provide an impressed current system and/or to recharge the sacrificial anode from sacrificial anode corrosion products.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: February 24, 2015
    Assignee: Vector Corrosion Technologies Ltd.
    Inventors: George Sergi, Attanayake Mudiyanselage Gamini Seneviratne, David Whitmore
  • Patent number: 8961763
    Abstract: Provided is a device comprising an upper chamber, a middle chamber and a lower chamber, wherein the upper chamber is in communication with the middle chamber through a first pore, and the middle chamber is in communication with the lower chamber through a second pore, wherein the first pore and second pore are about 1 nm to about 100 nm in diameter, and are about 10 nm to about 1000 nm apart from each other, and wherein each of the chambers comprises an electrode for connecting to a power supply. Methods of using the device are also provided, in particular for sequencing a polynucleotide.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: February 24, 2015
    Assignee: The Regents of the University of California
    Inventors: William Dunbar, Jungsuk Kim
  • Patent number: 8956525
    Abstract: Disclosed are electrolysis catalysts formed from cobalt, oxygen and buffering electrolytes (e.g. fluoride). They can be formed as a coating on an anode by conducting an electrolysis reaction using an electrolyte containing cobalt and an anionic buffering electrolyte. The catalysts will facilitate the conversion of water to oxygen and hydrogen gas at a range of mildly acidic conditions. Alternatively, these anodes can be used with cathodes that facilitate other desirable reactions such as converting carbon dioxide to methanol.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: February 17, 2015
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: James B. Gerken, Shannon S. Stahl
  • Patent number: 8956517
    Abstract: Disclosed are nanocomposite-based biosensors. The biosensors include an electrode, a nanocomposite over the surface of the electrode, the nanocomposite comprising a population of carbon nanotubes and a population of magnetic nanoparticles dispersed in the population of carbon nanotubes, wherein the magnetic nanoparticles comprise a ferromagnetic metal or compound thereof, and one or more biomolecules over the surface of the electrode, wherein the biomolecules are capable of undergoing a redox reaction with a target molecule. Also disclosed are nanocomposites, modified electrodes, kits, and methods for using the biosensors.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: February 17, 2015
    Assignee: Indian Institute of Technology Madras
    Inventors: Ramaprabhu Sundara, Tessy Theres Baby
  • Patent number: 8956518
    Abstract: An electrochemical sensing apparatus and methods are provided. In one embodiment, an apparatus is provided having a carrier that supports an electrochemical module and that communicates between electrodes on the electrochemical module and an analyte measurement device.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: February 17, 2015
    Assignee: LifeScan, Inc.
    Inventors: Garry Chambers, Alastair M. Hodges, Ronald C. Chatelier
  • Patent number: 8951403
    Abstract: A detection method for a sensor membrane formed of europium titanium oxide as part of a biosensor by using PNIPAAm for wrapping enzymes includes adding 1.0 g of NIPAAm powder to 20 ml water, heating same at 60° C. to form NIPAAm solution, and cooling the NIPAAm solution; adding 200 ?l of 98.7 wt % of APS and 50 ?l of 99 wt % of TEMED to the NIPAAm solution, uniformly mixing same, and reacting the mixture for 30 hours to prepare a transparent, gel PNIPAAm; adding 5 mg enzymes to 100 ?l of 1×PBS buffer solution, uniformly mixing same, adding 100 ?l of PNIPAAm to the buffer solution, and uniformly mixing the buffer solution; placing a biosensor on a heater for heating at a constant temperature of 37° C. with the biosensor being an EIS sensor having a sensor membrane formed of EuTixOy; and taking a measurement.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: February 10, 2015
    Assignee: Chang Gung University
    Inventors: Tung-Ming Pan, Chao-Wen Lin, Kung-Yuan Chang, Min-Hsien Wu, Shiao-Wen Tsai
  • Patent number: 8951404
    Abstract: The system includes an electronic measuring apparatus for receiving an electrochemical sensor including a substrate that carries the current collectors for connecting the measuring and reference electrodes to the measuring apparatus. The measuring electrode is coated with a reagent including at least the specific enzyme of the biological compound to be analysed in a body fluid. The measuring apparatus can impose at least two different temperatures to enable the signal from the compound to be analysed from those of other biological compounds interfering with the signal. Application to measuring glucose in the blood with glucose dehydrogenase as the enzyme, without interference with maltose.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: February 10, 2015
    Assignee: The Swatch Group Research and Development Ltd
    Inventors: Wolfgang Schuhmann, Sabine Borgmann
  • Patent number: 8945362
    Abstract: Methods for depositing a metal or metal alloy on a substrate and articles made with the methods are described. The metal or metal alloy is deposited on the substrate electrolytically. The current is periodically interrupted during deposition to improve throwing power and reduce nodule formation on the metal or metal alloy deposit.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: February 3, 2015
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Jacek M. Knop, John G. Carter, Donald E. Cleary