Patents Examined by Lyle A. Alexander
  • Patent number: 11630101
    Abstract: The present invention relates to a method for diagnosing anomalies in the coagulation of blood, comprising the following successive steps: a) placing a sample of total blood in a holder containing two pairs of electrodes connected to an apparatus generating an electrical current; b) incubating this sample for 60 to 180 seconds in the presence of calcium; c) adding to this sample tissue factor in a concentration high enough to trigger the coagulation of the blood; d) measuring the impedance variation between the electrodes as a function of time, for a period comprised between 10 and 30 minutes from step (c), and generating a curve of the impedance values as a function of time; e) comparing the value of the area under the curve generated in step (d) with the value of an area under a reference curve.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: April 18, 2023
    Assignee: HOSPICES CIVILS DE LYON
    Inventor: Christophe Nougier
  • Patent number: 11567049
    Abstract: Systems and methods for the detection of one or more target molecules, such as benzene, are described. The systems and methods may include a molecularly imprinted polymer film; a sensing material, wherein the molecularly imprinted polymer film comprises a polymer host with one or more binding sites for one or more target molecules. The molecularly imprinted polymer film may be coated upon the sensing material.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: January 31, 2023
    Assignee: FRESHAIR SENSOR, LLC
    Inventor: Joseph J. BelBruno
  • Patent number: 11525813
    Abstract: A container assembly for use with a high-pressure liquid chromatography (HPLC) instrument is disclosed, in which the container assembly, when coupled to a source of pressurized gas, provides fluid medium to the HPLC instrument at positive pressure. The container assembly has an external exterior container shell, an internal fluid container for holding fluid medium, an interstitial volume between the external exterior container shell and the internal fluid container, a port for fluidly connecting the volume to a pressurized gas source, and a port for fluidly connecting the internal fluid container to the HPLC instrument. As a pressurized gas in the interstitial volume increases, fluid medium flows out of the port connected to the internal fluid bag and container assembly at a positive pressure. A system incorporating the container assembly, and method of use of the same, are also disclosed.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: December 13, 2022
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Nathan Wrench, William Mainwaring-Burton, Chris Butcher, Nick Harrison
  • Patent number: 11513038
    Abstract: The application relates to a sample holder (110) and a system (100). The application also relates to a method for processing a biological sample (S) and use of the sample holder or of the system in an analytical method or a diagnostic method. The sample holder (110) comprises a tubular member (111) with a wall that is at least locally transparent and at least locally permeable for reagents, wherein the tubular member consists at least partially of a transparent material.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: November 29, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Reinhold Wimberger-Friedl, Jacobus Hermanus Maria Neijzen, Anja Van De Stolpe
  • Patent number: 11493501
    Abstract: Disclosed are methods, materials and devices for approximation of blood volume in a fluid, such as in a biological fluid collected during a surgical procedure. The method and devices include the use of a RBC flocculant, such as polyDADMAC, and an approximate blood hematocrit for the type of animal, as well as a calculated RBC packing ratio corresponding to the collection device being used. Also provided is a Blood Indicator Panel (BIP), comprising a series of markings calculated from an observed red blood settlement volume, the average animal type hematocrit, and a calculated RBC packing ratio “?” value for the collection device. Pediatric (about 200 ml or 250 ml size container), adult human (about 1,000 ml-1,500 ml) and veterinary (about 500 ml-2,500 ml) collection containers are also disclosed, that include a RBC flocculant, for use in approximating blood volume in a fluid.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: November 8, 2022
    Assignee: CYPHER MEDICAL, LLC
    Inventors: Christopher A. Carew, Jian Ling
  • Patent number: 11493502
    Abstract: Disclosed are methods, materials and devices for approximation of blood volume in a fluid, such as in a biological fluid collected during a surgical procedure. The method and devices include the use of a RBC flocculant, such as polyDADMAC, and an approximate blood hematocrit for the type of animal, as well as a calculated RBC packing ratio corresponding to the collection device being used. Also provided is a Blood Indicator Panel (BIP), comprising a series of markings calculated from an observed red blood settlement volume, the average animal type hematocrit, and a calculated RBC packing ratio “?” value for the collection device. Pediatric (about 200 ml or 250 ml size container), adult human (about 1,000 ml-1,500 ml) and veterinary (about 500 ml-2,500 ml) collection containers are also disclosed, that include a RBC flocculant, for use in approximating blood volume in a fluid.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: November 8, 2022
    Assignee: CYPHER MEDICAL, LLC
    Inventors: Christopher A. Carew, Jian Ling, Harold T. Duperier, III
  • Patent number: 11485965
    Abstract: A data storage medium is disclosed comprising a two-dimensional (2D) support structure onto which artificially synthesized DNA molecules encoding digital information are placed and then covered with a protective layer. The 2D support structure is formed from a material such as metal foil, glass, or plastic. The 2D support structure may be functionalized with positively charged molecules to improve DNA adhesion. The DNA is protected from degradation by encapsulation in a protective layer of a non-reactive material such as silica or a thin layer of metal. A process for storing DNA on 2D support structures is also disclosed. Correlation of specific DNA molecules with a physical storage location on a 2D support structure provides geometric addressability for selective access to specific digital information.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: November 1, 2022
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Karin Strauss, Bichlien Hoang Nguyen, Robert N. Grass, Alexander Xavier Christof Kohll, Weida Chen
  • Patent number: 11478799
    Abstract: The present invention provides microfabricated substrates and methods of conducting reactions within these substrates. The reactions occur in plugs transported in the flow of a carrier-fluid.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: October 25, 2022
    Assignee: The University of Chicago
    Inventors: Rustem F. Ismagilov, Joshua David Tice, Cory John Gerdts, Bo Zheng
  • Patent number: 11440004
    Abstract: A microparticle sorting microchip for a flow cytometer is provided to enable sorting of microparticles at higher speed, higher purity, and higher acquisition rate. The microparticle sorting microchip includes a main channel through which a microparticle-containing fluid flows, a trap channel coaxially communicating with the main channel, a trap chamber communicating with the trap channel, and a gate channel intersecting the trap channel. The trap channel has an opening intersecting the gate channel. The trap channel has a smaller cross-sectional area upstream of the opening than downstream of the opening along a direction in which the microparticle-containing fluid flows.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: September 13, 2022
    Assignee: Sony Corporation
    Inventors: Tatsumi Ito, Kazuya Takahashi, Masahiro Matsumoto
  • Patent number: 11413615
    Abstract: The present invention provides microfabricated substrates and methods of conducting reactions within these substrates. The reactions occur in plugs transported in the flow of a carrier-fluid.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: August 16, 2022
    Assignee: The University of Chicago
    Inventors: Rustem F. Ismagilov, Joshua David Tice, Cory John Gerdts, Bo Zheng
  • Patent number: 11413614
    Abstract: The present invention provides microfabricated substrates and methods of conducting reactions within these substrates. The reactions occur in plugs transported in the flow of a carrier-fluid.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: August 16, 2022
    Assignee: The University of Chicago
    Inventors: Rustem F. Ismagilov, Joshua David Tice, Cory John Gerdts, Bo Zheng
  • Patent number: 11413595
    Abstract: Provided is a fluid flow device having high freedom of choosing means for detecting flow errors. The fluid flow device includes a channel forming body. The channel forming body forms a plurality of fluid channels, a plurality of detection spaces corresponding to the fluid channels, respectively, and a plurality of communication channels providing respective communications between the fluid channels and the detection spaces corresponding thereto, respectively. Each of the detection spaces contains a detection fluid and a detection gas aligned in a longitudinal direction thereof, and an interface is formed therebetween. The detection gas is contained in the detection space so as to allow the position of the interface to be changed with the pressure change of a processing object fluid that flows through the fluid channels.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: August 16, 2022
    Assignee: Kobe Steel, Ltd.
    Inventors: Akira Matsuoka, Koji Noishiki, Tomohiro Ozono
  • Patent number: 11376592
    Abstract: A single junction sorter for a microfluidic particle sorter, the single-junction sorter comprising: an input channel, configured to receive a fluid containing particles; an output sort channel and an output waste channel, each connected to the input channel for receiving the fluid therefrom; a bubble generator, operable to selectively displace the fluid around a particle to be sorted and thereby to create a transient flow of the fluid in the input channel; and a vortex element, configured to cause a vortex in the transient flow in order to direct the particle to be sorted into the output sort channel.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: July 5, 2022
    Assignee: Cellular Highways Ltd.
    Inventors: Mikhail Bashtanov, Richard Gold, Calum Hayes, Fred Hussain, Robyn Pritchard, Salman Samson Rogers, Nuno Varelas, Alexander Zhukov
  • Patent number: 11366051
    Abstract: A device including a microfluidic channel structure formed on a substrate and including a first channel and a fluid actuator within the microfluidic channel structure. A sense region within the first channel is to receive a fluid flow of target biologic particles for counting in a single file pattern, with the sense region having a volume on a same order of magnitude as a volume of a single one of the target biologic particles.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: June 21, 2022
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Jeremy Sells, Nick McGuinness, Chantelle Domingue, Manish Giri
  • Patent number: 11353379
    Abstract: A sampling apparatus (100) employs a cell-positioning system to move a sample capture cell (138) relative to a specimen positioning system (124). The cell-positioning system may be controlled to move sample capture cell (138) opposite to movement of the specimen positioning system (124) to maintain alignment of the sample capture cell (138) with an optical path of a laser beam of a sample generator (108). Alternatively or additionally, the cell-positioning system may be controlled to move sample capture cell (138) in response to alignment deviation of a reference beam on a quadrant detector (404).
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: June 7, 2022
    Assignee: Elemental Scientific Lasers, Inc.
    Inventors: Shane Robert Hilliard, Leif Christian Summerfield, Erik Barnholt Larsen
  • Patent number: 11291999
    Abstract: A method and system for improving throughput of a fluidic system such as a biopolymer analysis system by cleaning accumulated or clogging biopolymer from the fluidic system is disclosed. The method and system utilize a light energy source to photocleave the biopolymer molecules that may accumulate or aggregate in the fluidic system or clog a passageway. The accumulated biopolymer may be exposed to a light energy source for a sufficient period of time such that the biopolymer molecule is dosed with sufficient energy to photocleave the biopolymer molecules, thereby restoring the efficiency of and flow through the system.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: April 5, 2022
    Assignee: Bionano Genomics, Inc.
    Inventors: David Xian Wei Yao, William K. Ridgeway
  • Patent number: 11278898
    Abstract: The present invention provides microfabricated substrates and methods of conducting reactions within these substrates. The reactions occur in plugs transported in the flow of a carrier-fluid.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: March 22, 2022
    Assignee: The University of Chicago
    Inventors: Rustem F. Ismagilov, Joshua David Tice, Cory John Gerdts, Bo Zheng
  • Patent number: 11275071
    Abstract: Sensors for detecting and distinguishing metals in a sample comprise phenol group-containing azo dyes, the phenol group having one hydroxy involved in reversible metal ion binding and a second hydroxy alkylated to an optically transparent substrate. The sensors have utility for detecting chromium, calcium, magnesium, copper, mercury, nickel, zinc, cobalt, manganese, cadmium, lead, tin, aluminum, potassium, sodium, or arsenic ions in a sample.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: March 15, 2022
    Assignee: UWM Research Foundation, Inc.
    Inventors: Alan Schwabacher, Peter Geissinger, Trevor Hagemann, Sarah Oehm, Tyler G. Fenske
  • Patent number: 11268962
    Abstract: A sample is dissolved in a reagent 4 containing an organic solvent in a conversion vessel 11. A gas is supplied from a first gas supply part into the conversion vessel 11 via a reagent introduction tube 17, and thus the interior of the conversion vessel 11 is pressurized. A gas is supplied from a second gas supply part into the reagent 4 in the conversion vessel 11 via a reagent discharge tube 18, and thus gas bubbles 41 are formed in the reagent 4.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: March 8, 2022
    Assignee: SHIMADZU CORPORATION
    Inventors: Tomoko Yamaguchi, Natsuki Iwata
  • Patent number: 11266383
    Abstract: Various embodiments are described herein for a system and a method for obtaining samples of tissue for analysis by mass spectrometry. A region of interest can be identified in tissue using image data from a first imaging modality that is other than mass spectrometry. At least one tissue sample can be acquired using a tissue sampler from a sampling location related to the region of interest. Mass spectrum data can be generated for the acquired tissue samples using a mass spectrometer. In some embodiments, polarimetry may be used on a tissue slice, mass spectrometry may be performed on the same tissue slice and then H&E imaging may be performed on the same tissue slice.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: March 8, 2022
    Assignee: University Health Network
    Inventors: Arash Zarrine-Afsar, David A. Jaffray, Alessandra Tata, Michael Woolman, Alexander Vitkin