Patents Examined by Lyle A. Alexander
  • Patent number: 11027276
    Abstract: A film bag for a microfluidic analysis system includes a film bag bottom, a film bag opening arranged opposite the film bag bottom, and a peel seam arranged between the film bag bottom and the film bag opening. The peel seam is formed to produce a closed reagent receiving region between the peel seam and the film bag bottom and a tube between the peel seam and the film bag opening. The reagent receiving region has a reagent receiving length extending between the peel seam and the film bag bottom. The tube has a tube length extending between the peel seam and the film bag opening. The tube length is at least five percent of the reagent receiving length.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: June 8, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Christian Dorrer, Daniel Czurratis, Jochen Rupp, Karsten Seidl, Thomas Brettschneider
  • Patent number: 11029293
    Abstract: Methods and systems are for determining the concentration of a chemical species in an analyte solution. At least one train of segments are injected into a microfluidic channel having a first end and a second end, each train of segments having segments of analyte solution and segments of sensing solution which are immiscible with the segments of analyte solution. The train of segments is circulated from the first end to the second end of the microfluidic channel such that a reversible chemical exchange is established between the chemical species of each segment of analyte solution and a chemical indicator of the at least one contacting segment of sensing solution. The response of the chemical indicator is measured at the second end of the microfluidic channel and the concentration of the chemical species in the analyte solution is determined based on the response.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: June 8, 2021
    Assignee: INSTITUT NATIONAL D'OPTIQUE
    Inventors: Serge Caron, Sébastien Dubus, Christophe Rivière, Simon Turbide, Patrick Paradis
  • Patent number: 11020746
    Abstract: A reaction processor includes: a vessel installation unit for installing a reaction processing vessel provided with a channel formed in a substrate; a high temperature heater and a medium temperature heater for adjusting the temperature of the channel of the reaction processing vessel; a vessel alignment mechanism for adjusting the position of the reaction processing vessel 10; and a housing that has a housing main unit and a cover portion capable of being opened and closed with respect to the housing main unit and that houses the vessel installation unit, the high temperature heater, the medium temperature heater, and the vessel alignment mechanism. In conjunction with the state of the cover portion being changed from an open state to a closed state, the vessel alignment mechanism aligns the reaction processing vessel such that the reaction processing vessel can be heated by the high temperature heater and the medium temperature heater.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: June 1, 2021
    Assignee: Nippon Sheet Glass Company, Limited
    Inventor: Takashi Fukuzawa
  • Patent number: 11009434
    Abstract: Disclosed is a method of supported liquid extraction (SLE), wherein adsorption of at least one analyte to a solid phase is performed in the presence of salt. The method may include contacting a sample with salt, adsorption phase such as diatomaceous earth and optionally a subsequent step of phospholipid depletion. Also disclosed is a cartridge including two compartments, for salt and adsorption phase, and optionally a third compartment including a phospholipid depletion phase.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: May 18, 2021
    Assignee: BIOTAGE AB
    Inventor: Sung Baek
  • Patent number: 10994252
    Abstract: In at least one embodiment, the inventive technology relates to in-vessel generation of a material from a solution of interest as part of a processing and/or analysis operation. Preferred embodiments of the in-vessel material generation (e.g., in-vessel solid material generation) include precipitation; in certain embodiments, analysis and/or processing of the solution of interest may include dissolution of the material, perhaps as part of a successive dissolution protocol using solvents of increasing ability to dissolve. Applications include, but are by no means limited to estimation of a coking onset and solution (e.g., oil) fractionating.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: May 4, 2021
    Assignee: The University of Wyoming Research Corporation
    Inventors: John F. Schabron, Joseph F. Rovani
  • Patent number: 10981166
    Abstract: Described herein are pipette driven well plates for nano-liter droplet storage and methods of using same. Embodiments may include an inlet, an outlet, a bypass channel, and a fluidic trap containing a valve covered by a removable covering, in which the fluid enters the fluidic trap when the removable covering is removed. The fluid enters either the fluidic trap or the bypass channel, depending on which of the fluidic trap or bypass channel has the lower hydrodynamic resistance. Embodiments may be used by closing the valve, introducing a first fluid to fill the fluidic trap and partially fill a bypass channel, opening the valve, removing the first fluid surrounding the valve, and introducing a second fluid into the fluidic trap, in which the introducing results in a mixture of the first and second fluids.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: April 20, 2021
    Assignee: NEOFLUIDICS LLC
    Inventor: Deepak Solomon
  • Patent number: 10942163
    Abstract: Devices for micro-fluid mixing micro-fluids are presented, together with example methods for micro-mixing using example devices. An example device may include a micro-volume fluid chamber (?VFC), a micro-volume mixing chamber (?VMC), and a source of a target micro fluid. The ?VFC may include two slidably-mounted piston segments that divide the ?VFC into three sub-volumes, one of which initially contains a mixer micro-fluid. The source of the target micro fluid may be triggered to deliver the target micro-fluid into another of the sub-volumes via an inlet channel. A propellant may be triggered to drive axial motion of the piston segments, causing the sub-volumes to compress. Through this action, the mixer micro-fluid may be expelled via a first outlet channel into the ?VMC, and the target micro-fluid may be expelled via a second outlet channel into the ?VMC. As the piston segments move, they block and unblock the inlet and outlet channels.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: March 9, 2021
    Assignee: VERILY LIFE SCIENCES LLC
    Inventors: Benjamin David Krasnow, Eric Peeters, Peter Howard Smith, Ethan Glassman
  • Patent number: 10942186
    Abstract: There is provided a method for identifying protein methylation on arginine and lysine residues. The method comprises obtaining a set of peptides; blocking un-methylated arginine and lysine residues and the free N-terminal amine of peptides in the set of peptides, so that un-methylated peptides are neutralized and only methylated peptides are positively charged at neutral or basic pH; isolating the methylated peptides based on charge; and performing mass spectrometry (MS) analysis on the isolated methylated peptides to detect methylated lysine and arginine residues. Methods provided herein can be used for large scale, high throughput profiling of protein methylation in a cell or tissue.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: March 9, 2021
    Assignee: UNIVERSITY OF OTTAWA
    Inventors: Daniel Figeys, Zhibin Ning, Anna Sylvia Mierzwa
  • Patent number: 10935475
    Abstract: A biological fluids concentration device, including a tube-in-tube assembly, is disclosed. The tube-in-tube assembly receives biologic fluids and may then be placed in the bucket of a centrifuge and spun to separate out the components of the biological fluid by their various densities. For example, whole blood may be centrifuged in the tube-in-tube assembly for separating into plasma, red blood cell component, and a buffy coat. A piston slideably and sealingly engages an inner tube of the tube-in-tube assembly, the inner tube fitting within an outer tube. A lid is designed to engage the top of the outer tube, which lid has an opening therein for receipt of a plunger. The plunger is adapted to move up and down with respect to the lid and the tubes, so as to sealingly, in a down position, and unsealingly, in an open position, engage the top of the inner tube of the tube-in-tube assembly.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: March 2, 2021
    Assignee: ALLIANCE PARTNERS, LLC
    Inventors: Emad Hassouneh, Logan White, Matt Schmidt, Andrew Enke, Frank Morris
  • Patent number: 10926258
    Abstract: Microfluidic probe head for processing a sequence of separate liquid volumes separated by spacers. The microfluidic probe head includes: an inlet, an outlet, a first fluid channel and a second fluid channel and a fluid bypass connecting the first fluid channel and the second fluid channel. The first fluid channel delivers the sequence of separate liquid volumes from the inlet toward a deposition area, the fluid bypass allows the spacers to be removed from the first fluid channel obtaining a free sequence of separate liquid volumes without spacers, the first fluid channel delivers the free sequence of separate liquid volumes to the deposition area, and the second fluid channel delivers the removed spacers from the fluid bypass to the outlet. The present invention also provides a microfluidic probe and method for processing a sequence of separate liquid volumes.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: February 23, 2021
    Assignee: International Business Machines Corporation
    Inventors: Julien Autebert, Emmanuel Delamarche, Govind Kaigala, Xander Frank Van Kooten
  • Patent number: 10888859
    Abstract: Provided in part herein are multiple-tube devices that contain a region of reduced wall thickness, which devices facilitate biological fluid processing and analysis. Also provided in part herein are methods of manufacturing and using such devices.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: January 12, 2021
    Assignee: BIOTIX, INC.
    Inventors: Arta Motadel, Peter Paul Blaszcak
  • Patent number: 10875017
    Abstract: Described is a microfluidic serial dilution platform based well-plate using an oil-free immiscible phase driven by manual or electronic pipettors. The well-plate includes a plurality of fluidic traps, a plurality of hydrophilic capillary constriction channels and a plurality of bypass channels. Each of the plurality of bypass channels is associated with one of the plurality of fluidic traps, each of the plurality of hydrophilic capillary constriction channels is associated with one of the plurality of fluidic traps, and each of the plurality of fluidic traps is associated with one of the plurality of bypass channels and one of the plurality of hydrophilic capillary constriction channels. The well-plate further includes an inlet, an outlet, and a main channel with a plurality of portions that connects the inlet to the plurality of fluidic traps, associated hydrophilic capillary constriction channels and associated bypass channels, and the outlet.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: December 29, 2020
    Assignee: NEOFLUIDICS LLC
    Inventors: Deepak Solomon, Nilesh Gupta
  • Patent number: 10864162
    Abstract: Methods for making particles, such as nanoparticles, devices useful in the methods, and particles made by the method are described herein. The methods involves the use of microfluidic device, such that upon mixing solutions of the materials to form the particles (or a solution of the material or materials to form the particles and a non-solvent for the material or materials) at least two symmetrical microvortices are formed simultaneously. The method can be used to prepare polymeric or non-polymeric particles and hybrid particles, such as lipid-polymer hybrid particles, as well as such particles containing one or more agents associated with the particles.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: December 15, 2020
    Assignees: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, THE BRIGHAM AND WOMEN'S HOSPITAL, INC., ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI
    Inventors: YongTae Kim, Zahi Fayad, Willem J. Mulder, Edward Fisher, Francois Fay, Omid C. Farokhzad, Robert Langer
  • Patent number: 10859477
    Abstract: A composition for use in bioseparation. The composition includes a plurality of hollow particles having a siliceous surface. The composition further includes a surface-modifying agent bonded to the hollow particles. The surface-modifying agent includes a binding segment and a reactive segment. The binding segment includes a silyl group and the reactive segment includes a reactive nitrogen group.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: December 8, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Masayuki Nakamura, Naota Sugiyama, Cynthia D. Zook, Stephen E. Amos, Jerald K. Rasmussen, Nicole M. Gryska
  • Patent number: 10850273
    Abstract: There is provided a master for micro flow path creation, a transfer copy, and a method for producing a master for micro flow path creation by which transfer copies having an area with high hydrophilicity can be easily mass-produced, the master for micro flow path creation including: a base material; a main concave-convex portion provided on a surface of the base material and extending in a planar direction of the base material; and a fine concave-convex portion provided on a surface of the main concave-convex portion and having a narrower pitch than the main concave-convex portion. The fine concave-convex portion has an arithmetic average roughness of 10 nm to 150 nm and has a specific surface area ratio of 1.1 to 3.0.
    Type: Grant
    Filed: October 26, 2015
    Date of Patent: December 1, 2020
    Assignee: DEXERIALS CORPORATION
    Inventors: Shinya Suzuki, Kazuya Hayashibe, Akihiro Shibata
  • Patent number: 10801946
    Abstract: A method for manufacturing a device for electronically monitoring the consumption of gas adsorbent media in a media bed includes forming a monitoring rod of a corrosion resistant material. A plurality of sensors are attached to an exterior surface of the monitoring rod, and a communication channel is routed between each sensor and the connecting rod.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: October 13, 2020
    Assignee: Pure Air Filtration, LLC
    Inventor: Kevin F. Jameson
  • Patent number: 10761095
    Abstract: A microfluidic device including a serum separator, a quantum dot and antibody inlet connected to the serum separator, a quantum dot linked immunosorbent assay (QLISA) chamber connected to the serum separator, and an outlet connected to the QLISA chamber. The microfluidic device is configured to determine an amount of drug in a serum.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: September 1, 2020
    Assignee: COMSATS Institute of Information Technology
    Inventors: Madeeha Chaudhry, Malik Abdul Rehman, Raheel Qamar, Arshad Saleem Bhatti
  • Patent number: 10761000
    Abstract: In a liquid stirring method, after a second liquid is discharged into a reaction container accommodating a first liquid from a dispensing probe provided with a dispensing tip at the leading end thereof, a mixture of the first liquid and second liquid in the container is stirred by being sucked out and discharged by the dispensing probe. The number of stirrings through sucking out and discharging is changed according to the total volume of the first liquid and second liquid. If the total volume of the first liquid and second liquid is below a preset threshold, sucking out and discharging is repeated for a prescribed number of times.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: September 1, 2020
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Shunsuke Sasaki, Yoshihiro Yamashita
  • Patent number: 10753853
    Abstract: A method of evaluating the corrosion resistance of a coated metal substrate, the method including putting a liquid composition into contact with a corrosion protection coating present on the surface of a metal substrate, the liquid composition including water, a gelling agent, corrosion-catalyst ions, and a color pH indicator; gelling the liquid composition in order to form a corrosion-accelerator gel in contact with the coating; performing a corrosion test during which the gel that has formed is left in contact with the corrosion protection coating; and evaluating the corrosion resistance of the substrate coated by the corrosion protection coating by observing the color of the color pH indicator present in the gel after performing the corrosion test.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: August 25, 2020
    Assignees: ARIANEGROUP SAS, SAFRAN HELICOPTER ENGINES
    Inventors: Marie Betaille-Francoual, Loïc Oger, Anaïs Lecaplain
  • Patent number: 10710075
    Abstract: Methods and devices for concentrating target cells using dielectrophoresis (DEP) are disclosed. The method allows relatively high throughput of sample through a microfluidic device in order to allow rapid capture of target cells even when they are present in low concentrations within the sample. The method utilizes multiple chambers through which samples will flow, the chambers arranged such that the first capture area has a larger area and faster flow rate than a second chamber, the second chamber being positioned downstream of the first capture area and being smaller with a slower flow rate to further concentrate the material captured in the first capture area.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: July 14, 2020
    Assignee: QUANTUMDX GROUP LIMITED
    Inventors: Jonathan O'Halloran, Heather Murton, Stephen Osborne, Eduardo Boada, Jonathan Salmon