Patents Examined by Mallika D Fairchild
  • Patent number: 11253162
    Abstract: A computer-implemented method of heart rate estimation includes receiving heart beat data, detecting sequential beats within the heart beat data, identifying a beat interval of each sequential beat, and generating a beat array containing the beat intervals of sequential beats within an array window. The beat array is then sorted based on the beat intervals of the sequential beats so as to generate a sorted beat array. A weight array is calculated by applying a weight control parameter to each beat interval in the sorted beat array, wherein the weight array includes a weight value for each beat interval that is proportional to a corresponding beat interval value in the sorted beat array. A weighted median is calculated based on the weight array, and a heart rate estimation for the array window is determined based on the weighted median of the weight array and the sorted beat array.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: February 22, 2022
    Assignee: GE Precision Healthcare LLC
    Inventors: Martti Ilmari Kesaniemi, Rene Johannes Cornelis Coffeng
  • Patent number: 11253714
    Abstract: A computing device includes a memory configured to store instructions. The computing device also includes a processor to execute the instructions to perform operations that include providing an alternating electrical signal to a patient through at least a pair of electrodes, and determining transthoracic impedance of the patient from a measurement associated with the applied alternating electrical signal. Operations also include identifying, from the transthoracic impedance, a sequence of resistance values for controlling the discharge of a charge storage device located external to the patient, and controlling the discharge of the charge storage device using the identified sequence of resistance values.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: February 22, 2022
    Assignee: ZOLL Medical Corporation
    Inventors: Gary A. Freeman, Donald R. Boucher, Frederick J. Geheb
  • Patent number: 11253704
    Abstract: Electrical stimulation devices can be used to treat tinnitus. For example, tinnitus can be treated using implantable electrodes and stimulation devices for delivering electrical stimulation to a patient's cochlear region. Cochlear surface electrode(s), endosteal electrode(s), subendosteal electrode(s), intraosseous electrode(s), or short intracochlear electrode(s) (or a combination thereof), connected to existing or modified cochlear implant receiver/stimulator technology, can provide a successful model for long-term treatment of tinnitus in a large number of patients. In some cases, patients can simply turn on the tinnitus implant when experiencing troublesome tinnitus and gain instant relief.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: February 22, 2022
    Assignee: Mayo Foundation for Medical Education and Research
    Inventor: Matthew L. Carlson
  • Patent number: 11241576
    Abstract: The present embodiment is an implantable device capable of controlling cochlear implant electrode insertion and positioning. The embodiment uses an implanted mechanical positioning unit to advance position and monitor an electrode array. The device can be controlled via an external controller to reposition or advance an electrode array at any point after implantation with no surgical re-intervention. A cochlear implant electrode array whose position can be advanced and modified over time to best fit a patient's evolving hearing pattern would improve functional outcomes and significantly expand the candidacy range for cochlear implantation to include patients with substantial residual hearing.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: February 8, 2022
    Assignee: University of Iowa Research Foundation
    Inventors: Marlan R. Hansen, Christopher Kaufmann
  • Patent number: 11235147
    Abstract: A charge balancing circuit is adapted to be connected to an electrode and to a stimulation source. The charge balancing circuit has an electrode terminal for receiving an electrode voltage, an amplifier coupled to the electrode terminal and adapted to amplify and invert the electrode voltage for generating an intermediate voltage and a compensation stage. The compensation stage is adapted to generate an output current if the electrode voltage lies outside a specified safety range and to generate the output current depending on the intermediate voltage. The compensation stage is further adapted to supply the output current to the electrode terminal for driving the electrode voltage towards and/or into the safety range.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: February 1, 2022
    Assignee: ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG
    Inventors: Natalie Butz, Matthias Kuhl, Yiannos Manoli
  • Patent number: 11229798
    Abstract: An implantable leadless pacing device and delivery system may comprise an implantable leadless pacing device and a catheter configured to deliver the implantable leadless packing device to a target location. The implantable device may comprise a power source, circuitry operatively coupled to the power source, a housing at least partially enclosing the circuitry, a first electrode secured relative to and offset from a longitudinal axis of the housing and exposed exterior to the housing, and a fixation mechanism secured relative to the housing. The fixation mechanism may comprise at least one tine configured to move between an elongated delivery configuration and a curved deployed configuration and radially offset from the first electrode. The catheter may comprise a distal holding section defining a cavity configured to receive the implantable leadless pacing device.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: January 25, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Peter Toy, Keith R. Maile, Brendan Early Koop, Bryan J. Swackhamer, Allan Charles Shuros
  • Patent number: 11219415
    Abstract: A fever-causing disease outbreak detection system for an early warning of the outbreak of an infectious disease. The system uses an array of infrared detectors to measure the temperatures of individuals in a population. The measured temperatures are used to create a measured population temperature distribution. A central control unit generates a predicted population temperature distribution using environmental data such as local atmospheric conditions and compares the predicted population temperature distribution to the measured population temperature distribution. If an outbreak is detected, an alert is issued.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: January 11, 2022
    Assignee: Prince Mohammad Bin Fahd University
    Inventor: Faisal Al Anezi
  • Patent number: 11202917
    Abstract: In one example, a medical device includes a housing having a channel configured to receive an electrical lead. The medical device can further have a rotatable member having a longitudinal axis about which the rotatable member is configured to rotate. The rotatable member can have an outer surface having a first radius from the longitudinal axis. The rotatable member can also have a cam lobe extending farther from the longitudinal axis than the first radius of the outer surface. The cam lobe can have a substantially planar surface parallel to the longitudinal axis. The substantially planar surface of the cam lobe can be configured to retain the electrical lead within the channel. The medical device can further have a slider having a central portion substantially parallel with the cam lobe. The slider can further have a slider protrusion on the central portion of the slider.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: December 21, 2021
    Assignee: Medtronic, Inc
    Inventors: Don A. Rutledge, Greg J. Doyle
  • Patent number: 11198003
    Abstract: A method for optimization of the stimulation pattern of a set of implanted electrodes in excitable tissue of a patient is disclosed, wherein it comprises the steps of: (a) choosing a first group of a certain number of from said set of implanted electrodes, (b) stimulating the excitable tissue electrically by said first group of electrodes, (c) registering information provided by the patient, (d) assigning each electrode of said first group of electrodes a value related to said information, wherein these steps are repeated for one or more further groups of said certain number of electrodes chosen from said set of implanted electrodes, wherein each electrode may be included in one or several groups, wherein the total assigned value for each electrode is calculated, and wherein electrodes having a total assigned value exceeding a predetermined value or a predetermined number of the electrodes having the highest total assigned value are chosen to be included in said stimulation pattern, as well as a method for tr
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: December 14, 2021
    Assignee: NEURONANO AB
    Inventors: Jens Schouenborg, Hjalmar Bjartmarz
  • Patent number: 11185702
    Abstract: An antenna assembly for use with a medical implant includes an antenna that defines at least one turn and an electromagnetic shield.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: November 30, 2021
    Assignee: Advanced Bionics AG
    Inventors: Austin Charles Davis, James George Elcoate Smith
  • Patent number: 11179558
    Abstract: Systems and related methods for supplying power to an implantable blood pump are provided. A system includes a base module and a plurality of energy storage devices. A first energy storage device is operatively coupled to the base module. A second energy storage device is operatively coupled to the first modular energy storage device. The energy storage devices are mechanically coupled in series, electrically coupled in parallel, and configured to provide redundant sources of power to drive an implantable blood pump.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: November 23, 2021
    Assignee: TC1 LLC
    Inventors: Kevin Conyers, Jesse Gage, Carine Hoarau, Jaime Arturo Romero, Joseph C. Stark, III
  • Patent number: 11173304
    Abstract: A three-dimensional electrode device and a method for manufacturing the same are disclosed. A three-dimensional electrode device as disclosed can be in close contact with target cells in a retina without damaging the retina to apply electrical stimulation to the retina. The three-dimensional electrode device can include a board prepared to be inserted into a photoreceptor layer in an eyeball and formed of a transparent material; and a plurality of electrodes formed on the board and configured to stimulate a retina. The board can be prepared to be deformed corresponding to a shape of the retina and configured to make the electrodes be in close contact with the retina.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: November 16, 2021
    Assignee: DAEGU GYEONGBUK INSTITUTE OF SCIENCE & TECHNOLOGY
    Inventors: So Hee Kim, Hee Won Seo
  • Patent number: 11173296
    Abstract: A medical devices and methods related thereto are disclosed. In an embodiment, the medical device including a pump configured to be inserted within an atrium of a heart, said pump comprising an inlet and an outlet. In addition, the pump includes a flexible outflow conduit coupled to the outlet and configured to carry blood. The outflow conduit includes a radially inner surface defining a throughbore, and a radially outer surface. Further, the pump comprises a driveline configured to conduct control and power signals between the pump and an external device. The driveline extends through the outflow conduit between the radially inner surface and the radially outer surface.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: November 16, 2021
    Assignee: Texas Heart Institute
    Inventors: Oscar H. Frazier, William E. Cohn
  • Patent number: 11160453
    Abstract: The present document discloses a solution for estimating blood pulse wave characteristics by using multiple measurement locations of a human body. According to an aspect, a method includes detecting, in a first measurement signal measured by a first heart activity sensor associated with a first location of a human body, a first occurrence of a blood pulse wave; detecting, in a second measurement signal measured by a second heart activity sensor from a second location of the human body different from the first location, a second occurrence of the blood pulse wave; estimating, on the basis of said detections synchronized to a common clock, time characteristics of the blood pulse wave; and computing, on the basis of said time characteristics, a metric representing a physiological condition of the human body.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: November 2, 2021
    Assignee: Polar Electro Oy
    Inventors: Niclas Granqvist, Patrick Celka
  • Patent number: 11147963
    Abstract: A method for manufacturing an implantable lead includes forming an elongated lead body core that defines a longitudinal axis. The elongated lead body core has a plurality of axially extending channels that are circumferentially spaced apart from one another around the elongated lead body core. The method also includes positioning an electrode ring around the elongated lead body core and electrical conductors. The method includes positioning a respective electrical conductor in each of the axially extending channels and positioning a dielectric insulator ring around the elongated lead body core and electrical conductors.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: October 19, 2021
    Assignee: Oscor Inc.
    Inventors: Timothy Searfoss, Thomas P. Osypka
  • Patent number: 11147972
    Abstract: A method of neurostimulation titration. The method includes setting titration parameters for an electrical signal delivered by an implantable medical device, initiating titration with the titration parameters and an aggressiveness profile, performing titration by increasing at least one of a current amplitude, a frequency, a pulse width or a duty cycle of the electrical signal until a threshold is reached or a side effect is detected, pausing the titration while waiting for commands from the patient or caregiver, and resuming the titration in response to receiving authorization from an external device.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: October 19, 2021
    Assignee: LivaNova USA, Inc.
    Inventors: Scott Stubbs, Imad Libbus, Scott Mazar, Bruce H. KenKnight, Badri Amurthur
  • Patent number: 11147968
    Abstract: Hemodynamic performance of a heart may be improved by determining, from a location associated with a diaphragm, an occurrence of a valid cardiac event; and then delivering asymptomatic electrical stimulation therapy directly to the diaphragm at termination of a diaphragmatic stimulation delay period that is timed relative to the occurrence of the valid cardiac event. The diaphragmatic stimulation delay period may be automatically established by sensing a plurality of cardiac events directly from a diaphragm; and for each of the sensed cardia events, determining whether the sensed cardiac event represents a valid cardiac event or a non-valid cardiac event. The diaphragmatic stimulation delay period is then calculated based on a plurality of sensed cardia events that are determined to be valid.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: October 19, 2021
    Assignee: VisCardia, Inc.
    Inventors: Peter T. Bauer, Edward Chinchoy, Jay Snell
  • Patent number: 11147975
    Abstract: Embodiments of the invention are related to medical devices filled with a liquid composition, amongst other things. In an embodiment, the invention includes a hermetically sealed housing defining an interior volume, a component module disposed within the interior volume, the component module comprising a circuit board, the component module displacing a portion of the interior volume. A liquid composition can be disposed within the housing, the liquid composition filling at least 80% of the interior volume not displaced by the component module. Other embodiments are also included herein.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: October 19, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Scott Dahl, John H. Tangren, Kevin Ely, Douglas J. Brandner, William J. Linder
  • Patent number: 11135434
    Abstract: The present disclosure provides systems and methods for protection circuitry for an implantable pulse generator (IPG) of a neurostimulation system. The protection circuitry is coupled to an IPG ground, a plurality of electrodes, and an IPG case, and operable to protect IPG stimulation and sensing circuitry from damage during electrostatic discharge and cardiac defibrillation, and to mitigate unintended stimulation during electromagnetic interference. The protection circuitry includes an IPG ground connection, a plurality of protection Zener diodes, wherein one of the protection Zener diodes is electrically coupled between the IPG case and a float Zener diode, and wherein the remaining protection Zener diodes are electrically coupled between the plurality of electrodes and the float Zener diode, and the float Zener diode electrically coupled between the plurality of protection Zener diodes and the IPG ground.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: October 5, 2021
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventor: Steven Boor
  • Patent number: 11123567
    Abstract: An antenna apparatus having a first coil including at least one turn on at least one first-coil substrate and a second coil including at least one turn on at least one second-coil substrate. The first and second coils are electrically connected to one another in parallel.
    Type: Grant
    Filed: December 16, 2017
    Date of Patent: September 21, 2021
    Assignee: Advanced Bionics AG
    Inventor: Wensheng Vincent Kuang