Patents Examined by Mark Tornow
  • Patent number: 9136238
    Abstract: A low-noise flip-chip package, comprising: a carrier substrate having first and second opposing main faces; and a flip-chip substrate connected in a face-down manner onto the first main face of the carrier substrate via a connection array, wherein: the flip-chip substrate comprises at least first and second circuitry portions spaced apart from one another; the flip-chip substrate comprises a substrate-contact boundary located between the first and second circuitry portions; and each of the first circuitry portion, the second circuitry portion and the substrate-contact boundary has its own separate signal-reference connection extending via a respective connection of the connection array through the carrier substrate to a respective electrical contact at the second main face of the carrier substrate for connection to a common signal-reference element in an external circuit.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: September 15, 2015
    Assignee: Socionext Inc.
    Inventors: Ian Juso Dedic, Ghazanfer Ali
  • Patent number: 9136497
    Abstract: An electroluminescence generating device comprising a channel of organic semiconductor material, said channel being able to carry both types of charge carriers, said charge carriers being electrons and holes; an electron electrode, said electron electrode being in contact with said channel and positioned on top of a first side of said channel layer or within said channel layer, said electron electrode being able to inject electrons in said channel layer; a hole electrode, said hole electrode being spaced apart from said electron electrode, said hole channel and positioned on top of within said channel layer, said hole electrode being able to inject holes into said channel; a control electrode positioned on said first side or on a second side of said channel; whereby light emission of said electroluminescence generating device can be acquired by applying an electrical potential difference between said electron electrode and said hole electrode.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: September 15, 2015
    Assignee: E.T.C. S.R.L.
    Inventor: Michele Muccini
  • Patent number: 9136249
    Abstract: A stacked semiconductor package includes a first semiconductor chip having one surface, and an other surface which faces away from the one surface, and first through electrodes which pass through the one surface and the other surface and project out of the other surface; a second semiconductor chip stacked over the one surface of the first semiconductor chip and having second through electrodes which are connected with the first through electrodes; a heat dissipation member disposed over the second semiconductor chip; and a first heat absorbing member disposed to face the other surface of the first semiconductor chip and defined with through holes into which projecting portions of the first through electrodes are inserted.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: September 15, 2015
    Assignee: SK Hynix Inc.
    Inventors: Taek Joong Kim, Jin Hui Lee
  • Patent number: 9105566
    Abstract: According to one disclosed embodiment, a method for fabricating a monolithic integrated composite device comprises forming a group III-V semiconductor body over a group IV semiconductor substrate, forming a trench in the group III-V semiconductor body, and forming a group IV semiconductor body in the trench. The method also comprises fabricating at least one group IV semiconductor device in the group IV semiconductor body, and fabricating at least one group III-V semiconductor device in the group III-V semiconductor body. In one embodiment, the method further comprises planarizing an upper surface of the III-V semiconductor body and an upper surface of the group IV semiconductor body to render those respective upper surfaces substantially co-planar. In one embodiment, the method further comprises fabricating at least one passive device in a defective region of said group IV semiconductor body adjacent to a sidewall of the trench.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: August 11, 2015
    Assignee: International Rectifier Corporation
    Inventor: Michael A. Briere
  • Patent number: 9105537
    Abstract: A multi-junction photodiode for molecular detection and discrimination and fabrication methods thereof. The multi junction photodiode includes a substrate having first conductive type dopants, an epitaxial layer having the first conductive type dopants, a deep well having second conductive type dopants, a first well having the first conductive type dopants, a second well having the second conductive type dopants, a third well having the first conductive type dopants, and a first doped region having the second conductive type dopants. The epitaxial layer is disposed on the substrate. The deep well is disposed in the epitaxial layer. The first well having three sides connected to the epitaxial layer is disposed in the deep well. The second well is disposed in the first well. The third well having three sides connected to the epitaxial layer is disposed in the second well. The first doped region is disposed in the third well.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: August 11, 2015
    Assignee: Personal Genomics, Inc.
    Inventors: Chiun-Lung Tsai, Jui-Feng Huang, Ming-Fang Hsu, Chih-Yang Chen
  • Patent number: 9099294
    Abstract: A process for forming an optical package comprises at least partially encasing a first leadframe strip in a first mold compound thereby forming a molded leadframe strip, mounting at least one optical semiconductor device on the molded leadframe strip, at least partially encasing the molded leadframe strip, and singulating the molded leadframe strip to form discrete packages for optical applications. An apparatus for forming an optical package comprises means for at least partially encasing a first leadframe strip in a first mold compound thereby forming a molded leadframe strip, means for mounting at least one optical semiconductor device on the at least one molded leadframe strip, means for at least partially encasing the molded leadframe strip, and means for singulating the molded leadframe strip to form discrete and grid array packages.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: August 4, 2015
    Assignee: UTAC Thai Limited
    Inventors: Somchai Nondhasitthichai, Saravuth Sirinorakul
  • Patent number: 9093322
    Abstract: A semiconductor device is disclosed. One embodiment includes a semiconductor substrate and at least two insulating elements located above the semiconductor substrate or above a mold compound embedding the semiconductor substrate. The at least two insulating elements have a first face facing the semiconductor substrate or the mold compound and a second face facing away from the semiconductor substrate or the mold compound. A conductive element for each of the at least two insulating elements extends from the first face of the insulating element to the second face of the insulating element.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: July 28, 2015
    Assignee: INTEL MOBILE COMMUNICATIONS GMBH
    Inventors: Thorsten Meyer, Markus Brunnbauer, Recai Sezi
  • Patent number: 9087755
    Abstract: A photodiode includes an anode (1202, 1302, 1402) and a cathode (1306, 1406) formed on a semiconductor substrate (402). A vertical electrode (702, 1314, 1414) is in operative electrical communication with a buried component (502, 1312, 1412) of the photodiode. In one implementation, the photodiode is an avalanche photodiode of a silicon photomultiplier. The substrate may also include integrated CMOS readout circuitry (1102).
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: July 21, 2015
    Assignee: Koninklijke Philips N.V.
    Inventor: Thomas Frach
  • Patent number: 9082607
    Abstract: A process for forming an optical package comprises at least partially encasing a first leadframe strip in a first mold compound thereby forming a molded leadframe strip, mounting at least one optical semiconductor device on the molded leadframe strip, at least partially encasing the molded leadframe strip, and singulating the molded leadframe strip to form discrete packages for optical applications. An apparatus for forming an optical package comprises means for at least partially encasing a first leadframe strip in a first mold compound thereby forming a molded leadframe strip, means for mounting at least one optical semiconductor device on the at least one molded leadframe strip, means for at least partially encasing the molded leadframe strip, and means for singulating the molded leadframe strip to form discrete and grid array packages.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: July 14, 2015
    Assignee: UTAC THAI LIMITED
    Inventors: Somchai Nondhasitthichai, Saravuth Sirinorakul
  • Patent number: 9082789
    Abstract: An integrated circuit device and method for manufacturing an integrated circuit device is disclosed. The integrated circuit device comprises a core device and an input/output circuit. Each of the core device and input/output circuit includes a PMOS structure and an NMOS structure. Each of the PMOS includes a p-type metallic work function layer over a high-k dielectric layer, and each of the NMOS structure includes an n-type metallic work function layer over a high-k dielectric layer. There is an oxide layer under the high-k dielectric layer in the input/output circuit.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: July 14, 2015
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Hung Huang, Yu-Hsien Lin, Ming-Yi Lin, Jyh-Huei Chen
  • Patent number: 9070837
    Abstract: A semiconductor light-emitting device includes: a laminated structure, a first electrode, a second electrode and a dielectric laminated film. The laminated structure includes, a first semiconductor layer, a second semiconductor layer, and a light-emitting layer provided between the first semiconductor layer and the second semiconductor layer, in which the second semiconductor layer and the light-emitting layer are selectively removed and a part of the first semiconductor layer is exposed to a first main surface on the side of the second semiconductor layer.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: June 30, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Katsuno, Yasuo Ohba, Kei Kaneko, Mitsuhiro Kushibe
  • Patent number: 9064963
    Abstract: A semiconductor structure includes a substrate, an undoped GaP insulating layer formed over the substrate, and a semiconductor layer formed over the GaP layer.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: June 23, 2015
    Assignee: Infineon Technologies AG
    Inventor: Muhammad Nawaz
  • Patent number: 9065003
    Abstract: According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer and configured to emit a light having a peak wavelength of 440 nanometers or more. Tensile strain is applied to the first semiconductor layer. An edge dislocation density of the first semiconductor layer is 5×109/cm2 or less. A lattice mismatch factor between the first semiconductor layer and the light emitting layer is 0.11 percent or less.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: June 23, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hisashi Yoshida, Koichi Tachibana, Tomonari Shioda, Toshiki Hikosaka, Jongil Hwang, Hung Hung, Naoharu Sugiyama, Shinya Nunoue
  • Patent number: 9059362
    Abstract: A light emitting element includes a semiconductor substrate, and an island structure formed on the semiconductor substrate. The island structure includes a light-emitting-unit thyristor and a current confinement structure. The light-emitting-unit thyristor includes stacked semiconductor layers having a pnpn structure. The current confinement structure includes a high-resistance region and a conductive region, and confines carriers in the conductive region.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 16, 2015
    Assignee: FUJI XEROX CO., LTD.
    Inventors: Taku Kinoshita, Takashi Kondo, Kazutaka Takeda, Hideo Nakayama
  • Patent number: 9054149
    Abstract: A method of fabricating a bipolar transistor including emitter and base regions having first and second conductivity types, respectively, includes forming an isolation region at a surface of a semiconductor substrate, the isolation region having an edge that defines a boundary of an active area of the emitter region, and implanting dopant of the second conductivity type through a mask opening to form the base region in the semiconductor substrate. The mask opening spans the edge of the isolation region such that an extent to which the dopant passes through the isolation region varies laterally to establish a variable depth contour of the base region.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: June 9, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Xin Lin, Daniel J. Blomberg, Jiangkai Zuo
  • Patent number: 9054673
    Abstract: A resonator fabrication method is provided. A method includes providing a plurality of electrode patterns disposed apart from each other on a substrate using a nano-imprint technique; and forming an extended electrode pattern connected to a plurality of electrode patterns, and forming a nano structure laid across an extended electrode patterns. Therefore, a nano-electromechanical system (NEMS) resonator is easily fabricated at a nanometer level.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: June 9, 2015
    Assignees: Samsung Electronics Co., Ltd., Korea University Industrial and Academic Collaboration Foundation
    Inventors: Yun-kwon Park, Byeoung-ju Ha, Byeong-Kwon Ju, Jae-sung Rieh, In-sang Song, Jin-woo Lee, Jea-shik Shin, Young-min Park
  • Patent number: 9048297
    Abstract: An integrated circuit containing a vertical interconnect that includes a region of interconnect metal continuously surrounding one or more dielectric pillars. The vertical interconnect electrically contacts a top surface of a lower conductive structure. An upper conductive structure contacts a top surface of the vertical interconnect. A process of forming an integrated circuit that includes forming a vertical interconnect that has a region of interconnect metal continuously surrounding one or more dielectric pillars. The vertical interconnect electrically contacts a top surface of a lower conductive structure, and an upper conductive structure contacts a top surface of the vertical interconnect.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: June 2, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Scott R. Summerfelt
  • Patent number: 9048234
    Abstract: A microelectronic assembly includes first and second stacked microelectronic elements, each having spaced apart traces extending along a front face and beyond at least a first edge thereof. An insulating region can contact the edges of each microelectronic element and at least portions of the traces of each microelectronic element extending beyond the respective first edges. The insulating region can define first and second side surfaces adjacent the first and second edges of the microelectronic elements. A plurality of spaced apart openings can extend along a side surface of the microelectronic assembly. Electrical conductors connected with respective traces can have portions disposed in respective openings and extending along the respective openings. The electrical conductors may extend to pads or solder balls overlying a face of one of the microelectronic elements.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: June 2, 2015
    Assignee: Tessera, Inc.
    Inventors: Belgacem Haba, Ilyas Mohammed, Vage Oganesian, David Ovrutsky, Laura Wills Mirkarimi
  • Patent number: 9047548
    Abstract: A semiconductor chip (1, 91) for a transponder (3, 93) comprises a chip substrate (4) with a surface (5), chip terminals (6, 7) arranged on the surface (5), and a passivation layer (22) covering the surface (5) and completely covering the chip terminals (6, 7), so that an antenna (2, 30) with antenna terminals (24, 25) can be attached to the chip (1, 91) above the chip terminals (6, 7), so that the chip terminals (6, 7), the passivation layer (22) and the antenna terminal (24, 25) form first capacitors.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: June 2, 2015
    Assignee: NXP B.V.
    Inventors: Christian Scherabon, Anton Salfener, Wolfgang Steinbauer, Joachim Heinz Schober
  • Patent number: 9029918
    Abstract: According to one embodiment, a semiconductor device includes a first major electrode, a first semiconductor layer, a first conductivity-type base layer, a second conductivity-type base layer, a second semiconductor layer, a buried layer, a buried electrode, a gate insulating film, a gate electrode, and a second major electrode. The buried layer of the second conductivity type selectively is provided in the first conductivity-type base layer. The buried electrode is provided in a bottom portion of a trench which penetrates the second conductivity-type base layer to reach the buried layer. The buried electrode is in contact with the buried layer. The gate electrode is provided inside the gate insulating film in the trench. The second major electrode is provided on the second semiconductor layer and is electrically connected to the second semiconductor layer and the buried electrode.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: May 12, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tsuneo Ogura