Patents Examined by Mark Tornow
  • Patent number: 10128149
    Abstract: Provided is a highly reliable semiconductor device and a method for manufacturing same. The method for manufacturing the semiconductor device includes forming an interlayer insulating film on a semiconductor substrate, forming a conductive plug in the interlayer insulating film, the conductive plug having a top surface for forming the same plane as the top surface of the interlayer insulating film, forming a first titanium film on the interlayer insulating film and the conductive plug, forming an aluminum diffusion-preventing film on the first titanium film, forming a second titanium film on the aluminum diffusion-preventing film, forming an aluminum film on the second titanium film, and shaping the area from the aluminum film to the first titanium film by etching to form wiring.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: November 13, 2018
    Assignee: LONGITUDE LICENSING LIMITED
    Inventor: Takashi Kansaku
  • Patent number: 10121043
    Abstract: A printed circuit board assembly (PCBA) and a method to assemble the PCBA are disclosed. The PCBA includes a printed circuit board (PCB), an image sensing chip and a protection layer. The PCB includes a first insulation layer, a second insulation layer, a first electrically conductive layer, a second electrically conductive layer, and a third electrically conductive layer. The image sensing chip has a number of bonding pads with a sensor portion facing down through the second opening. The PCBA can function as an image sensing module and make the module have the thinnest thickness.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: November 6, 2018
    Assignee: Sunasic Technologies, Inc.
    Inventors: Chi-Chou Lin, Zheng-Ping He
  • Patent number: 10115832
    Abstract: A TFT is provided. The TFT includes an active layer, and the active layer includes a first active layer and a second active layer. The second active layer is made of the oxide semiconductor material, and the first active layer has conductivity greater than conductivity of the second active layer.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: October 30, 2018
    Assignees: BOE TECHNOLOGY GROUP CO. LTD., HEFEI BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventor: Kuhyun Park
  • Patent number: 10109725
    Abstract: A reverse-conducting MOS device is provided having an active cell region and a termination region. Between a first and second main side. The active cell region comprises a plurality of MOS cells with a base layer of a second conductivity type. On the first main side a bar of the second conductivity type, which has a higher maximum doping concentration than the base layer, is arranged between the active cell region and the termination region, wherein the bar is electrically connected to the first main electrode. On the first main side in the termination region a variable-lateral-doping layer of the second conductivity type is arranged. A protection layer of the second conductivity type is arranged in the variable-lateral-doping layer, which protection layer has a higher maximum doping concentration than the maximum doping concentration of the variable-lateral-doping layer in a region attached to the protection layer.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: October 23, 2018
    Assignee: ABB Schweiz AG
    Inventors: Liutauras Storasta, Chiara Corvasce, Manuel Le Gallo, Munaf Rahimo, Arnost Kopta
  • Patent number: 10109486
    Abstract: The present disclosure relates to an integrated chip formed by a self-aligned litho-etch process. In some embodiments, the integrated chip has a first plurality of shapes of an integrated chip layer arranged along a first direction at a first pitch. The first plurality of shapes include a first two shapes separated by a first end-to-end space along a second direction perpendicular to the first direction. A second plurality of shapes of the integrated chip layer are arranged along the first direction at a second pitch. The second plurality of shapes include a second two shapes separated by a second end-to-end space along the second direction. A ratio of the first end-to-end space to the second end-to-end space is approximately equal to 2.5:1.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: October 23, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuan-Wei Huang, Chia-Ying Lee, Ming-Chung Liang
  • Patent number: 10109480
    Abstract: Exemplary embodiments provide materials and methods of forming high-quality semiconductor devices using lattice-mismatched materials. In one embodiment, a composite film including one or more substantially-single-particle-thick nanoparticle layers can be deposited over a substrate as a nanoscale selective growth mask for epitaxially growing lattice-mismatched materials over the substrate.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: October 23, 2018
    Assignee: STC.UNM
    Inventors: Seung-Chang Lee, Steven R. J. Brueck
  • Patent number: 10096601
    Abstract: Under one aspect, a non-volatile nanotube diode device includes first and second terminals; a semiconductor element including a cathode and an anode, and capable of forming a conductive pathway between the cathode and anode in response to electrical stimulus applied to the first conductive terminal; and a nanotube switching element including a nanotube fabric article in electrical communication with the semiconductive element, the nanotube fabric article disposed between and capable of forming a conductive pathway between the semiconductor element and the second terminal, wherein electrical stimuli on the first and second terminals causes a plurality of logic states.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: October 9, 2018
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, X. M. Henry Huang, Ramesh Sivarajan, Eliodor G. Ghenciu, Steven L. Konsek, Mitchell Meinhold
  • Patent number: 10096540
    Abstract: A semiconductor device has a semiconductor die with an insulation layer formed over an active surface of the semiconductor die. A conductive layer is formed over the first insulating layer electrically connected to the active surface. A plurality of conductive pillars is formed over the conductive layer. A plurality of dummy pillars is formed over the first insulating layer electrically isolated from the conductive layer and conductive pillars. The semiconductor die is mounted to a substrate. A height of the dummy pillars is greater than a height of the conductive pillars to maintain the standoff distance between the semiconductor die and substrate. The dummy pillars can be formed over the substrate. The dummy pillars are disposed at corners of the semiconductor die and a central region of the semiconductor die. A mold underfill material is deposited between the semiconductor die and substrate.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: October 9, 2018
    Assignee: STATS ChipPAC Pte. Ltd.
    Inventors: KyungHoon Lee, SeongWon Park, KiYoun Jang, JaeHyun Lee
  • Patent number: 10090441
    Abstract: A light emitting device includes a base including a support having a support surface. The light emitting element has a first surface and a second surface opposite to the first surface. The light emitting element is mounted on the base. The first surface faces the support surface. The reflecting film is provided on the second surface of the light emitting element. The light-transmissive covering member is provided on the base on a side of the support surface to cover the light emitting element and a covered region of the base except for an uncovered region of the base. An average reflectivity in the uncovered region of the base with respect to a peak emission wavelength of light emitted from the light emitting element is higher than an average reflectivity in the covered region of the base with respect to the peak emission wavelength of light.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: October 2, 2018
    Assignee: NICHIA CORPORATION
    Inventors: Yuichi Yamada, Motokazu Yamada
  • Patent number: 10090260
    Abstract: A semiconductor apparatus with fake functionality includes a logic device and at least one fake device. The logic device is formed on a substrate and turned on by a bias voltage. The fake device is also formed on the substrate. The fake device cannot be turned on by the same bias voltage applied on the logic device.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: October 2, 2018
    Assignee: eMemory Technology Inc.
    Inventors: Hsin-Ming Chen, Lun-Chun Chen, Meng-Yi Wu, Chih-Hao Huang, Tung-Cheng Kuo
  • Patent number: 10083984
    Abstract: Some embodiments include an integrated structure having a first opening extending through a stack of alternating insulative levels and conductive levels. A nitride structure is within the first opening and narrows the first opening to form a second opening. Detectable oxide is between the nitride structure and one or more of the conductive levels. Some embodiments include an integrated structure having a conductive material, a select device gate material over the conductive material, and vertically-stacked conductive levels over the select device gate material. A first opening extends through the vertically-stacked levels to the conductive material and has opposing sidewalls along a cross-section. Nitride liners are along the sidewalls of the first opening. Detectable oxide is between at least one of the nitride liners and one or more of the vertically-stacked conductive levels. Some embodiments include methods for forming integrated structures.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: September 25, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Jie Li, James Mathew, Kunal Shrotri, Luan C. Tran, Gordon A. Haller, Yangda Zhang, Hongpeng Yu, Minsoo Lee
  • Patent number: 10083963
    Abstract: An integrated circuit device may include a p-type metal oxide semiconductor (PMOS) transistor supported by a backside of an isolation layer. The integrated circuit device may also include an n-type metal oxide semiconductor (NMOS) transistor supported by a front-side of the isolation layer, opposite the backside. The integrated circuit device may further include a shared contact extending through the isolation layer and electrically coupling a first terminal of the PMOS transistor to the first terminal of the NMOS transistor.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: September 25, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Sinan Goktepeli, Jean Richaud
  • Patent number: 10079210
    Abstract: An integrated circuit device including a substrate having at least one fin-shaped active region, the at least one fin-shaped active region extending in a first direction, a gate line extending on the at least one fin-shaped active region in a second direction, the second direction intersecting with the first direction, a conductive region on a portion of the at least one fin-shaped active region at one side of the gate line, and a contact plug extending from the conductive region in a third direction, the third direction being perpendicular to a main plane of the substrate, may be provided. The contact plug may include a metal plug, a conductive barrier film on the conductive region, the conductive barrier film surrounding a sidewall and a bottom surface of the metal plug, the conductive barrier film including an N-rich metal nitride film, and a metal silicide film between the conductive region and the conductive barrier film.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: September 18, 2018
    Assignee: Samsung Electroics Co., Ltd.
    Inventors: Do-sun Lee, Do-hyun Lee, Chul-sung Kim, Sang-jin Hyun, Joon-gon Lee
  • Patent number: 10074729
    Abstract: In one embodiment, a method for fabricating a III-Nitride transistor on a III-Nitride semiconductor body is disclosed. The method comprises etching dielectric trenches in a field dielectric overlying gate, source, and drain regions of the III-Nitride semiconductor body, and thereafter forming a gate dielectric over the gate, source and drain regions. The method further comprises forming a blanket diffusion barrier over the gate dielectric layer, and then removing respective portions of the blanket diffusion barrier from the source and drain regions. Thereafter, gate dielectric is removed from the source and drain regions to substantially expose the source and drain regions. Then, ohmic contacts are formed by depositing contact metal in the source and drain regions. The method results in highly conductive source/drain contacts that are particularly suitable for power transistors, for example, III-Nitride transistors, such as GaN transistors.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: September 11, 2018
    Assignee: Infineon Technologies Americas Corp.
    Inventor: Michael A. Briere
  • Patent number: 10068905
    Abstract: A device comprises a first inverter comprising a first p-type transistor (PU) and a first n-type transistor (PD), a second inverter cross-coupled to the first inverter comprising a second PU and a second PD, a first pass-gate transistor coupled between the first inverter and a first bit line and a second pass-gate transistor coupled between the second inverter and a second bit line, wherein at least one transistor has a two-stage fin structure, and wherein a width of a bottom portion of the two-stage fin structure is greater than a width of an upper portion of the two-stage fin structure.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: September 4, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jhon-Jhy Liaw
  • Patent number: 10056397
    Abstract: A method for manufacturing an integrated circuit includes following steps. A substrate including a memory region and a core region is provided. At least two semiconductor word lines, two memory cells in between the two semiconductor word lines, and a semiconductor gate in between the two memory cells are formed in the memory region. A transistor device including a dummy gate is formed in the core region, and a height of the dummy gate is larger than a height of the semiconductor word lines. A protecting layer is formed on the semiconductor word lines, the memory cells, the semiconductor gate and the transistor device. A portion of the protecting layer is removed to expose the dummy gate and followed be removing the dummy gate to form a gate trench in the transistor device. Then a metal gate is formed in the gate trench.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: August 21, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventor: Chao-Sheng Cheng
  • Patent number: 10056450
    Abstract: A semiconductor device includes a semiconductor substrate with: a drift layer; a base layer; and a collector layer and a cathode layer. In the semiconductor substrate, when a region operating as an IGBT device is an IGBT region and a region operating as a diode device is a diode region, the IGBT and diode regions are arranged alternately in a repetitive manner; a damaged region is arranged on a surface portion of the diode region in the semiconductor substrate. The IGBT and diode regions are demarcated by a boundary between the collector and cathode layers; and a surface portion of the IGBT region includes: a portion having the damaged region at a boundary side with the diode region; and another portion without the damaged region arranged closer to an inner periphery side relative to the boundary side.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: August 21, 2018
    Assignee: DENSO CORPORATION
    Inventor: Kenji Kouno
  • Patent number: 10056559
    Abstract: It is an object of the present invention to provide a material having a high Tg and a wide energy gap. The present invention provides a spirofluorene derivative represented by General Formula 1. (In the formula, R1 is any one of hydrogen, an alkyl group having 1 to 4 carbon atoms, or a group represented by General Formula 2. Each of R2 and R3 is either hydrogen or an alkyl group having 1 to 4 carbon atoms and may be identical or different. R4 is an aryl group having 6 to 15 carbon atoms. Each of R5 and R6 is any one of hydrogen, an alkyl group having 1 to 4 carbon atoms, or an aryl group having 6 to 15 carbon atoms and may be identical or different.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: August 21, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Sachiko Kawakami, Harue Nakashima
  • Patent number: 10050111
    Abstract: A system and method for a channel region is disclosed. An embodiment comprises a channel region with multiple bi-layers comprising alternating complementary materials such as layers of InAs and layers of GaSb. The alternating layers of complementary materials provide desirable band gap characteristics for the channel region as a whole that individual layers of material may not.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: August 14, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Gerben Doornbos, Krishna Kumar Bhuwalka, Matthias Passlack
  • Patent number: 10043904
    Abstract: A semiconductor device includes a gate arranged on a substrate; a source/drain formed on the substrate adjacent to the gate; a source/drain contact extending from the source/drain and through an interlayer dielectric (ILD) over the source/drain, a portion of the source/drain positioned adjacent to the source/drain contact; and a silicide positioned along a sidewall of the source/drain contact between the portion of the source/drain and the source/drain contact, and along an endwall of the source/drain contact between the source/drain contact and the substrate.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: August 7, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Injo Ok, Soon-Cheon Seo, Balasubramanian Pranatharthiharan, Charan V. V. S. Surisetty