Patents Examined by Matthew Landau
  • Patent number: 9905491
    Abstract: Semiconductor packages with multiple substrates can incorporate cavities in a portion of an upper substrate to minimize or reduce void formations during a molding process. The cavities can be formed substantially over the integrated circuit devices and not over the internal interconnects to further facilitate the flow of the molding compound. The combination with extension members or recesses on a top or exterior surface of the upper substrate can further cut down on bleeding or spill over of the molding compound between adjacent packages and improve device reliability and yield.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: February 27, 2018
    Assignee: STATS ChipPAC Pte. Ltd.
    Inventors: In Sang Yoon, DeokKyung Yang, SeongHun Mun
  • Patent number: 9905702
    Abstract: Provided is a bottom-gate transistor including an oxide semiconductor, in which electric-field concentration which might occur in the vicinity of an end portion of a drain electrode layer (and the vicinity of an end portion of a source electrode layer) when a high gate voltage is applied to a gate electrode layer is reduced and degradation of switching characteristics is suppressed, so that the reliability is improved. The cross-sectional shape of an insulating layer which overlaps over a channel formation region is a tapered shape. The thickness of the insulating layer which overlaps over the channel formation region is 0.3 ?m or less, preferably 5 nm or more and 0.1 ?m or less. The taper angle ? of a lower end portion of the cross-sectional shape of the insulating layer which overlaps over the channel formation region is 60° or smaller, preferably 45° or smaller, further preferably 30° or smaller.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: February 27, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masahiko Hayakawa, Satoshi Shinohara
  • Patent number: 9899398
    Abstract: Methods are disclosed herein for fabricating non-volatile memory devices. An exemplary method forms a heterostructure over a substrate. The heterostructure includes at least one semiconductor layer pair having a first semiconductor layer and a second semiconductor layer disposed over the first semiconductor layer, the second semiconductor layer being different than the first semiconductor layer. A gate structure having a dummy gate is formed over a portion of the heterostructure, such that the gate structure separates a source region and a drain region of the heterostructure and a channel region is defined between the source region and the drain region. During a gate replacement process, a nanocrystal floating gate is formed in the channel region from the second semiconductor layer. In some implementations, during the gate replacement process, a nanowire is also formed in the channel region from the first semiconductor layer.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: February 20, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jean-Pierre Colinge, Carlos H. Diaz
  • Patent number: 9893074
    Abstract: A semiconductor device including a substrate, channels, a gate stack, and a pad separating region. The substrate has a pad region adjacent to a cell region. The channels extend in a direction crossing an upper surface of the substrate in the cell region. The gate stack includes a plurality of gate electrode layers spaced apart from each other on the substrate and enclosing the channels in the cell region. The pad separating region separates the gate stack into two or more regions in the pad region. The gate electrode layers have different lengths in the pad region.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: February 13, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae Goo Lee, Young Woo Park
  • Patent number: 9891481
    Abstract: The present disclosure provides a display substrate and a display device, which display substrate including a base substrate a plurality rows of subpixel units formed on the base substrate. Each of the subpixel units is of a parallelogram shape including first sides parallel to the row direction and second sides inclined with respect to vertical direction, wherein the vertical direction is perpendicular to the row direction, second sides of subpixel units in the same row have consistent incline direction, and second sides of subpixel units in adjacent two rows have opposite incline directions.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: February 13, 2018
    Assignees: BOE Technology Group Co., Ltd., Beijing BOE Optoelectrics Technology Co., Ltd.
    Inventors: Ming Yang, Xue Dong, Renwei Guo, Lei Ma, Wenqing Zhao
  • Patent number: 9892957
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate and a first dielectric layer over the substrate. The semiconductor device structure includes a second dielectric layer over the first dielectric layer. The first dielectric layer and the second dielectric layer are made of different materials. The semiconductor device structure includes a conductive via structure passing through the first dielectric layer and penetrating into the second dielectric layer. The conductive via structure has a first portion and a second portion. The first portion and the second portion are in the first dielectric layer and the second dielectric layer respectively. The first portion has a first end portion facing the substrate. A first width of the first end portion is greater than a second width of the second portion.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: February 13, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Ting Chen, Che-Cheng Chang, Chen-Hsiang Lu, Yu-Cheng Liu
  • Patent number: 9893256
    Abstract: A metal coating method includes forming a metal layer on a substrate including a first member and a second member, the second member having a lower thermal conductivity than a thermal conductivity of the first member, and irradiating the metal layer formed on the first member and the second member with a laser beam such that, after irradiation, the metal layer formed on the first member remains, and the metal layer formed on the second member is removed.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: February 13, 2018
    Assignee: NICHIA CORPORATION
    Inventors: Yoshikazu Matsuda, Ryo Suzuki
  • Patent number: 9887282
    Abstract: A method of forming an electrical device that includes forming ohmic contacts to a type III-V semiconductor substrate, and depositing a dielectric layer on the ohmic contacts and an exposed surface of the type III-V semiconductor substrate. A nanotube is positioned on a surface of the high-k dielectric that is overlying the type III-V semiconductor substrate and is between the ohmic contacts using chemical recognition. The dielectric layer is removed so that the nanotube is repositioned directly on the type III-V semiconductor substrate to provide an Schottky contact to a channel region of the type III-V semiconductor substrate.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: February 6, 2018
    Assignee: International Business Machines Corporation
    Inventors: Qing Cao, Ning Li, Jianshi Tang
  • Patent number: 9887166
    Abstract: An assembly with modules (110, 1310) containing integrated circuits and attached to a wiring substrate (120) is reinforced by one or more reinforcement frames (410) attached to the wiring substrate. The modules are located in openings (e.g. cavities and/or through-holes 414) in the reinforcement frame. Other features are also provided.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: February 6, 2018
    Assignee: Invensas Corporation
    Inventors: Rajesh Katkar, Laura Wills Mirkarimi, Arkalgud R. Sitaram, Charles G. Woychik
  • Patent number: 9881883
    Abstract: An electronic device may include a first substrate, an electrically conductive feed line on the first substrate, an insulating layer on the first substrate and the electrically conductive feed line, a second substrate on the insulating layer, and an antenna on the second substrate and having nanofilm layers stacked on the second substrate. The antenna is coupled to the feed line through an aperture.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: January 30, 2018
    Assignee: AMIT VERMA
    Inventor: Amit Verma
  • Patent number: 9882087
    Abstract: The invention relates to a manufacturing process of semiconductor material of element III nitride from a starting substrate, the process comprising: the formation of an intermediate layer based on silicon on a starting substrate, said intermediate layer comprising at least two adjacent zones of different crystalline orientations, especially a monocrystalline zone and an amorphous or poly-crystalline zone, growth via epitaxy of a layer of element III nitride on said intermediate layer, the intermediate layer being intended to be vaporised spontaneously during the step consisting of growing the layer of element III nitride via epitaxy.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: January 30, 2018
    Assignee: SAINT-GOBAIN LUMILOG
    Inventors: Jean-Pierre Faurie, Bernard Beaumont
  • Patent number: 9875973
    Abstract: A semiconductor device has a semiconductor die and encapsulant deposited over the semiconductor die. A first insulating layer is formed over the die and encapsulant. The first insulating layer is cured with multiple dwell cycles to enhance adhesion to the die and encapsulant. A first conductive layer is formed over the first insulating layer. A second insulating layer is formed over the first insulating layer and first conductive layer. The second insulating layer is cured with multiple dwell cycles to enhance adhesion to the first insulating layer and first conductive layer. A second conductive layer is formed over the second insulating layer and first conductive layer. A third insulating layer is formed over the second insulating layer and second conductive layer. The first, second, and third insulating layers have different CTE. The second insulating layer or third insulating layer is cured to a dense state to block moisture.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: January 23, 2018
    Assignee: STATS ChipPAC Pte. Ltd.
    Inventors: Yaojian Lin, Kang Chen, Yu Gu, Wei Meng, Chee Siang Ong
  • Patent number: 9875971
    Abstract: Magnetic random access memory (MRAM) packages with magnetic shield protections and methods of forming thereof are presented. Package contact traces are formed on the first major surface of the package substrate and package balls are formed on the second major surface of the package substrate. A die having active and inactive surfaces is provided on the first major surface of the package substrate. The die includes a magnetic storage element, such as an array of magnetic tunnel junctions (MTJs), formed in the die, die microbumps formed on the active surface. The package includes a top magnetic shield layer formed on the inactive surface of the die. The package may also include a first bottom magnetic shield in the form of magnetic shield traces disposed below the package contact traces. The package may further include a second bottom magnetic shield in the form of magnetic permeable underfill dielectric material.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: January 23, 2018
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Bharat Bhushan, Juan Boon Tan, Wanbing Yi
  • Patent number: 9865807
    Abstract: In one aspect, a method includes processing a metal substrate, performing a first etch on a first surface of the metal substrate to form, for an integrated circuit package, secondary leads and a curved component having two primary leads and performing a second etch, on a second surface of the substrate opposite the first surface, at locations on the secondary leads and locations on the curved component to provide a locking mechanism. Each primary lead located at a respective end of the curved component.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: January 9, 2018
    Assignee: Allegro MicroSystems, LLC
    Inventors: Shixi Louis Liu, Harianto Wong, Paul A. David, John B. Sauber, Shaun D. Milano, Raguvir Kanda, Bruce Hemenway
  • Patent number: 9859411
    Abstract: A field-effect transistor (a GaN-based HFET) includes a gate electrode, a gate electrode pad, a first wiring line connecting one end of the gate electrode and the gate electrode pad, a second wiring line connecting the other end of the gate electrode and the gate electrode pad, and a resistance element that is connected to the first wiring line and is capable of adjusting the impedance of the first wiring line.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: January 2, 2018
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Takamitsu Suzuki, Masaya Isobe, Masaru Kubo
  • Patent number: 9859114
    Abstract: Provided is a highly reliable semiconductor device which includes a transistor including an oxide semiconductor. The semiconductor device includes an oxide semiconductor layer; a gate insulating layer provided over the oxide semiconductor layer; a gate electrode layer overlapping with the oxide semiconductor layer with the gate insulating layer provided therebetween; an insulating layer being in contact with part of an upper surface of the oxide semiconductor layer, covering a side surface of the gate insulating layer and a side surface and an upper surface of the gate electrode layer, and having a lower oxygen-transmitting property than the gate insulating layer; a sidewall insulating layer provided on the side surface of the gate electrode layer with the insulating layer provided therebetween; a source electrode layer and a drain electrode layer which are electrically connected to the oxide semiconductor layer.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: January 2, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 9859199
    Abstract: A method of forming a semiconductor package includes growing a layer of carbon nano material on a chip. The chip has a first surface and a second surface and the layer of carbon nano material is grown on the first surface of the chip. The layer of carbon nano material is configured to provide a path through which heat generated from the chip is dissipated. A substrate is attached to the second surface of the chip. A molding compound is formed above the substrate to encapsulate the chip and the layer of carbon nano material.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: January 2, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Hao Tseng, Ying-Hao Kuo, Kuo-Chung Yee
  • Patent number: 9859268
    Abstract: A content addressable memory has many elements in one memory cell; thus, the area of one memory cell tends to be large. In view of the above, it is an object of an embodiment of the present invention to reduce the area of one memory cell. Charge can be held with the use of a channel capacitance in a reading transistor (capacitance between a gate electrode and a channel formation region). In other words, the reading transistor also serves as a charge storage transistor. One of a source and a drain of a charge supply transistor is electrically connected to a gate of the reading and charge storage transistor.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: January 2, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Daisuke Matsubayashi
  • Patent number: 9847360
    Abstract: A two-side illuminated image sensor includes: a first optical sensor layer and a second optical sensor layer each including a plurality of optical sensing cells, and a signal wiring layer disposed between the first and second optical sensor layers. The first and second optical sensor layers may include a first color filter layer and a second color filter layer each including a plurality of color filters corresponding to the plurality of optical sensing cells.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: December 19, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jesada Ungnapatanin, Seokho Yun, Doyoon Kim
  • Patent number: 9837347
    Abstract: A coaxial copper pillar for signal transmission with signal shield is disclosed so that signal integrity for the signal passes transmission is maintained. One embodiment shows at least one coaxial copper pillar is made as a terminal connector for a chip package, the coaxial copper pillars are made adaptive for electrically coupling the chip package to a mother board.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: December 5, 2017
    Inventor: Dyi-Chung Hu