Patents Examined by Melanie J. Yu
  • Patent number: 8288167
    Abstract: Embodiments of the invention relate to integrated chemiluminescence devices and methods for monitoring molecular binding utilizing these devices and methods. These devices and methods can be used, for example, to identify antigen binding to antibodies. The devices include both a chemiluminescence material and a detector integrated together.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: October 16, 2012
    Assignee: Intel Corporation
    Inventors: Narayan Sundararajan, Tae-Woong Koo
  • Patent number: 8288155
    Abstract: Methods of addressing a biomolecule to a selectively addressable electrode are described. A permeation layer overlying a plurality of selectively addressable electrodes is provided. The permeation layer includes a reactive group that is adapted to bond to a biomolecule and that requires activation through a chemical transformation before bonding to the biomolecule. At least one selectively addressable electrode is biased such that a pH change occurs in an overlying solution of the at least one selectively addressable electrode. The reactive group in a portion of the permeation layer above the at least one selectively addressable electrode is then chemically transformed to an activated reactive group as a result of the pH change. A biomolecule is then bound to the permeation layer overlying the at least one selectively addressable electrode through the activated reactive group.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: October 16, 2012
    Assignee: Gamida for Life B.V.
    Inventors: John R. Havens, Thomas J. Onofrey, Charles H. Greef, Gregory J. Kevorkian, Jain Krotz, Kristie L. Lykstad, Daniel E. Raymond, Howard R. Reese, Regina Rooney, John J. Scott
  • Patent number: 8283185
    Abstract: The present invention includes a magnetically susceptible polymer component, a method of making the same, and apparatuses and systems for mixing, separating or localizing a magnetically susceptible polymer compound in a reaction. The magnetically susceptible polymer component includes a polymer and a magnetically susceptible particle of a predetermined size, which yields a component having a much-improved magnetic reactivity due to the increase in magnetic material by mass percentage. The apparatuses and systems of the present invention employ controllable magnetic fields distributable in perpendicular directions in order to precisely control the orientation, position and relative motion of any magnetically susceptible components within a reaction vessel.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: October 9, 2012
    Assignee: STC.UNM
    Inventors: Bentley Paul, Davenport Michael
  • Patent number: 8280474
    Abstract: The present application provides Ag/AgCl based reference electrodes having an extended lifetime that are suitable for use in long term amperometric sensors. Electrochemical sensors equipped with reference electrodes described herein demonstrate considerable stability and extended lifetime in a variety of conditions.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: October 2, 2012
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Zenghe Liu, Benjamin J. Feldman, Brian Cho, Udo Hoss
  • Patent number: 8273297
    Abstract: An apparatus and a related method for performing particle agglutination reactions in at least one disposable probe tip are disclosed. The at least one probe tip includes a sample cavity for sample acquisition, at least one flanking cavity for the capture of particles by centrifugation or other means, a transition zone for the mixing of the sample with reagents for agglutination and a detection zone for the optical detection of particle agglutination. A mechanism may be attached to the probe tip for the controlled movement of fluids through the internal volume of the probe tip. The probe tip is particularly useful for the automation of high-throughput agglutination-type assays.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: September 25, 2012
    Assignee: Ortho-Clinical Diagnostics, Inc.
    Inventors: Zhong Ding, Amy M. Wilson-Colley
  • Patent number: 8268638
    Abstract: Methods and devices for detecting an analyte are provided. An analyte binding molecule is fixed to a nanoparticle to form a nanoparticle complex. The analyte binding molecule is capable of binding an analyte. The nanoparticle complex is introduced into one of a circulatory system of an animal or biological fluid of the animal. The analyte is allowed to bind to the nanoparticle complex. The analyte bound nanoparticle complex can be extracted and the presence of the analyte can be detected.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: September 18, 2012
    Assignee: Advantageous Systems, LLC
    Inventors: Adam L. Stein, Jacob M. White
  • Patent number: 8268247
    Abstract: An electrophoresis apparatus is generally disclosed for sequentially analyzing a single sample or multiple samples having one or more analytes in high or low concentrations. The apparatus comprises a relatively large-bore transport capillary which intersects with a plurality of small-bore separation capillaries and includes a valve system. Analyte concentrators, having antibody-specific (or related affinity) chemistries, are stationed at the respective intersections of the transport capillary and separation capillaries to bind one or more analytes of interest. The apparatus allows the performance of two or more dimensions for the optimal separation of analytes. The apparatus may also include a plurality of valves surrounding each of the analyte concentrators to localize each of the concentrators to improve the binding of one or more analytes of interest.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: September 18, 2012
    Assignee: Princeton Biochemicals, Inc.
    Inventor: Norberto A. Guzman
  • Patent number: 8263418
    Abstract: A sensor comprises silver nanoparticles in which substantially all of the surfaces of the silver nanoparticles are available for interaction with an analyte or for functionalization with a receptor which is capable of interacting with an analyte. Silver nanoparticles are preparated by forming the nanoparticles in the presence of a polymeric stabilizer such as PVA.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: September 11, 2012
    Assignee: The Provost, Fellows and Scholars of the College of the Holy and Undivided Trinity of Queen Elizabeth, Near Dublin
    Inventors: Margaret Elizabeth Brennan, Gordon James Armstrong, John Kelly, Aine Marie Whelan
  • Patent number: 8247219
    Abstract: The invention is directed to a method and device for simultaneously testing a sample for the presence, absence, and/or amounts of one or more of a plurality of selected analytes. The invention includes, in one aspect, a device for detecting or quantitating a plurality of different analytes in a liquid sample. Each chamber may include an analyte-specific reagent effective to react with a selected analyte that may be present in the sample, and detection means for detecting the signal. Also disclosed are methods utilizing the device.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: August 21, 2012
    Assignee: Applied Biosystems, LLC
    Inventors: Timothy Woudenberg, Michael Albin, Reid B. Kowallis, Yefim Raysberg, Robert P. Ragusa, Emily S. Winn-Deen
  • Patent number: 8246910
    Abstract: Sensing device and method for detecting presence and concentration of generic target analytes of interest. The device and method are based on detecting changes in effective dielectric induced by the target analytes of interest. Applications of the invention include, but are not restricted to, detecting and characterizing the presence of chemical and/or biological target analytes of interest as well as detecting and characterizing target analytes of interest from a separation apparatus. In one embodiment of the invention, the device comprises at least two electrodes in a rigid architecture such as a solid surface, where the electrodes have sizes and inter-electrode spacings that are on the order of sizes of target analytes of interest to improve sensitivity of the device. Changes in effective dielectric and, therefore, capacitance induced by a presence of the target analytes of interest are measured electronically.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: August 21, 2012
    Assignee: Universal Nanosensor Technologies Inc.
    Inventors: Al-Amin Dhirani, Yoshinori Suganuma
  • Patent number: 8247241
    Abstract: According to an aspect of the invention, there is provided a method for detecting a target compound including: injecting a test liquid containing a target compound into a colloid solution of magnetic nano-particles having an average particle diameter of 50 nm or less to allow the target compound to bind to the magnetic nano-particles, thereby forming bound magnetic nano-particles having a diameter of 100 nm or more; and bringing a dispersion liquid containing the bound magnetic nano-particles in proximity to a magnetic sensor including at least a magnetoresistive (MR) element and a permanent magnet while measuring the change in magnetic resistance to selectively detect the bound magnetic nano-particles, thereby indirectly detecting the target compound.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: August 21, 2012
    Assignee: FUJIFILM Corporation
    Inventors: Hiroyuki Hirai, Masayoshi Kojima, Isao Tsuyuki
  • Patent number: 8241571
    Abstract: A particle analyzer in which tagged particles to be analyzed are drawn through a suspended capillary tube where a predetermined volume in the capillary tube is illuminated. The illumination scattered by said particles is detected by a detector to count all particles. The fluorescent illumination emitted by tagged particles is detected and the output signals from the fluorescent detectors and scatter detector are processed to provide an analysis of the particles.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: August 14, 2012
    Assignee: EMD Millipore Corporation
    Inventors: Philippe J. Goix, Paul J. Lingane, Janette T. Phil-Wilson, Kenneth F. Uffenheimer
  • Patent number: 8241222
    Abstract: This disclosure relates to monitoring intracardiac or vascular impedance to determine a change in hemodynamic status by detecting changes in an impedance parameter over cardiac cycles. An example method includes measuring a plurality of impedance values of a path within a patient over time, wherein the path includes at least one blood vessel or cardiac chamber of the patient, and wherein the impedance values vary as a function of blood pressure within the at least one vessel or chamber, determining a plurality of values of an impedance parameter over time based on the measured impedance values, wherein each of the impedance parameter values is determined based on a respective sub-plurality of the impedance values, comparing at least one of the impedance parameter values to at least one prior impedance parameter value, and identifying a change in a cardiovascular parameter related to the blood pressure based on the comparison.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: August 14, 2012
    Assignee: Medtronic, Inc.
    Inventors: Todd M. Zielinski, Douglas A. Hettrick, Mattias Rouw
  • Patent number: 8236575
    Abstract: A first reactant, which is provided with a reaction site for specific binding with an analyte, and a fluorescent label site, and a second reactant, which is provided with a reaction site for specific binding with the analyte, and a fluorescence recognition site for recognizing fluorescence produced by the fluorescent label site of the first reactant, are respectively fixed onto a support such that the first reactant and the second reactant have a positional relationship adapted for the binding with the analyte.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: August 7, 2012
    Assignee: FUJIFILM Corporation
    Inventors: Koichi Minami, Hirohiko Tsuzuki
  • Patent number: 8236555
    Abstract: The present invention is directed to methods for conducting multiplexed assays. The methods are particularly well suited for measuring a plurality of analytes that may be present in very different abundances. The invention also relates to systems, devices, equipment, kits and reagents for use in such methods.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: August 7, 2012
    Assignee: Meso Scale Technologies, LLC
    Inventors: Selen A. Stromgren, Eli N. Glezer
  • Patent number: 8222024
    Abstract: The present invention relates to an apparatus for conducting a variety of assays for the determination of analytes in liquid samples, and relates to the methods for such assays. In particular, the invention relates to a single-use cartridge designed to be adaptable to a variety of real-time assay protocols, preferably assays for the determination of analytes in biological samples using immunosensors or other ligand/ligand receptor-based biosensor embodiments. The cartridge provides novel features for processing a metered portion of a sample, for precise and flexible control of the movement of a sample or second fluid within the cartridge, for the amending of solutions with additional compounds during an assay, and for the construction of immunosensors capable of adaptation to diverse analyte measurements.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: July 17, 2012
    Assignee: Abbott Point of Care Inc.
    Inventors: Graham Davis, Imants Lauks, Chao Lin, Cary James Miller
  • Patent number: 8216854
    Abstract: The present invention is directed to a system, device and method for measuring the concentration of an analyte in a fluid or matrix. A thermodynamically stabilized analyte binding ligand for use in the system, device and method is disclosed. The thermodynamically stabilized analyte binding ligand is resistant to degradation at physiological temperatures and its use within the device provides a minimally invasive sensor for monitoring the concentration of an analyte in a fluid or matrix as are present in the body of an animal.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: July 10, 2012
    Assignee: BioTex, Inc.
    Inventors: Ralph Ballerstadt, Roger McNichols, Ashok Gowda
  • Patent number: 8198039
    Abstract: Provided herein are biosensors that comprise a biological signal source linked to a substrate by a peptide nucleic acid spacer and methods of use of the biosensor. In one embodiment, the biosensor is used to detect prostate-specific antigen.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: June 12, 2012
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Haibin Shi, Joanne I. Yeh
  • Patent number: 8192947
    Abstract: The present invention is a novel biosensor composed of mOrange2 and mCherry fluorescent proteins operably linked via a linker, which provides a distinct color change upon separation of the fluorescent proteins.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: June 5, 2012
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Yingxiao Wang, Mingxing Ouyang
  • Patent number: 8187865
    Abstract: The present invention relates to a nanowire sensor and method for forming the same. More specifically, the nanowire sensor comprises at least one nanowire formed on a substrate, with a sensor receptor disposed on a surface of the nanowire, thereby forming a receptor-coated nanowire. The nanowire sensor can be arranged as a sensor sub-unit comprising a plurality of homogeneously receptor-coated nanowires. A plurality of sensor subunits can be formed to collectively comprise a nanowire sensor array. Each sensor subunit in the nanowire sensor array can be formed to sense a different stimulus, allowing a user to sense a plurality of stimuli. Additionally, each sensor subunit can be formed to sense the same stimuli through different aspects of the stimulus. The sensor array is fabricated through a variety of techniques, such as by creating nanopores on a substrate and electrodepositing nanowires within the nanopores.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: May 29, 2012
    Assignee: California Institute of Technology
    Inventors: Minhee Yun, Nosang Myung, Richard Vasquez, Margie Homer, Margaret Ryan, Shiao-Pin Yen, Jean-Pierre Fleurial, Ratnakumar Bugga, Daniel Choi, William Goddard, Abhijit Shevade, Mario Blanco, Tahir Cagin, Wely Floriano