Patents Examined by Michael Trinh
  • Patent number: 7560779
    Abstract: A mixed voltage circuit is formed by providing a substrate (12) having a first region (20) for forming a first device (106), a second region (22) for forming a second device (108) complementary to the first device (106), and a third region (24) for forming a third device (110) that operates at a different voltage than the first device (106). A gate layer (50) is formed outwardly of the first, second, and third regions (20, 22, 24). While maintaining a substantially uniform concentration of a dopant type (51) in the gate layer (50), a first gate electrode (56) is formed in the first region (20), a second gate electrode (58) is formed in the second region (22), and a third gate electrode (60) is formed in the third region (24). The third region (24) is protected while implanting dopants (72) into the first region (20) to form source and drain features (74) for the first device (106).
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: July 14, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Mark S. Rodder, Jarvis B. Jacobs
  • Patent number: 7560294
    Abstract: A light emitting element is provided with a semiconductor layer having a light emitting layer and an uneven surface, and a transparent material formed on the uneven surface. The transparent material has a refractive index lower than a sapphire substrate. Alternatively, a light emitting element is provided with a semiconductor layer including a light emitting layer, and a transparent high-refractive index material layer formed on a light radiation surface of the semiconductor layer. The light emitting element is of a flip-chip type, and the transparent high-refractive index material layer has a refractive index of n=1.6 or more.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: July 14, 2009
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Yoshinobu Suehiro, Naoki Nakajo
  • Patent number: 7554156
    Abstract: In a method for manufacturing a semiconductor device having an N-channel field effect transistor, the N-channel field effect transistor is formed by a process including the steps of forming a high dielectric constant gate insulating film on a substrate, forming a gate electrode on the high dielectric constant gate insulating film, forming an extension region by introducing N-type impurities into the substrate by using at least the gate electrode as a mask, and forming a pocket region by introducing P-type impurities under the extension region in the substrate by using at least the gate electrode as a mask. An amount of arsenic (As) that is introduced as the N-type impurities is in a range that is equal to or lower than a prescribed value that is determined based on a thickness of the high dielectric constant gate insulating film.
    Type: Grant
    Filed: October 21, 2005
    Date of Patent: June 30, 2009
    Assignee: Panasonic Corporation
    Inventors: Yoshinao Harada, Shigenori Hayashi, Masaaki Niwa
  • Patent number: 7550315
    Abstract: A semiconductor package includes a substrate formed of a board material, a semiconductor die bonded to the substrate, and an encapsulant on the die. The package also includes an array of external contacts formed as multi layered metal bumps that include a base layer, a bump layer, and a non-oxidizing outer layer. The external contacts are smaller and more uniform than conventional solder balls, and can be fabricated using low temperature deposition processes, such that package warpage is decreased. Further, the external contacts can be shaped by etching to have generally planar tip portions that facilitate bonding to electrodes of a supporting substrate. Die contacts on the substrate can also be formed as multi layered metal bumps having generally planar tip portions, such that the die can be flip chip mounted to the substrate.
    Type: Grant
    Filed: July 22, 2007
    Date of Patent: June 23, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Victor Tan Cher ′Khng, Lee Kian Chai
  • Patent number: 7550383
    Abstract: There are provided methods of performing a photolithography process for forming asymmetric semiconductor patterns and methods of forming a semiconductor device using the same. These methods provide a way of forming asymmetric semiconductor patterns on a photoresist layer through two exposure processes. To this end, a semiconductor substrate is prepared. A planarized insulating interlayer and a photoresist layer are sequentially formed on the overall surface of the semiconductor substrate. A first semiconductor pattern of a photolithography mask is transferred to the photoresist layer, thereby forming a photoresist pattern on the photoresist layer. A second semiconductor pattern of a second photolithography mask is continuously transferred to the photoresist layer, thereby forming a second photoresist pattern on the photoresist layer.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: June 23, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Joon-Soo Park, Gi-Sung Yeo, Han-Ku Cho, Sang-Gyun Woo, Tae-Young Kim, Byeong-Soo Kim
  • Patent number: 7550345
    Abstract: The invention includes methods of forming hafnium-containing materials, such as, for example, hafnium oxide. In one aspect, a semiconductor substrate is provided, and first reaction conditions are utilized to form hafnium-containing seed material in a desired crystalline phase and orientation over the substrate. Subsequently, second reaction conditions are utilized to grow second hafnium-containing material over the seed material. The second hafnium-containing material is in a crystalline phase and/or orientation different from the crystalline phase and orientation of the hafnium-containing seed material. The second hafnium-containing material can be, for example, in an amorphous phase. The seed material is then utilized to induce a desired crystalline phase and orientation in the second hafnium-containing material. The invention also includes capacitor constructions utilizing hafnium-containing materials, and circuit assemblies comprising the capacitor constructions.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: June 23, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, F. Daniel Gealy, Gurtej S. Sandhu
  • Patent number: 7547589
    Abstract: The invention provides a technique that enables formation of minute patterns on an uneven substrate in volume production without reducing productivity. The method for fabricating a semiconductor device includes: first patterning a semiconductor film on a substrate to form element regions, each of which will be provided with a source/drain region and a channel region, second forming a gate insulating film covering segments of the patterned semiconductor film in the respective element regions, third forming gate electrodes on the gate insulating film at predetermined positions, and fourth forming the source/drain region and the channel region in each element region. At least the gate electrodes are formed by a process including an exposure step through a holographic exposure mask in the third step, and by a process including an exposure step through a projection exposure mask, the element regions are formed in the first step, and the source/drain regions and the channel regions are formed in the fourth step.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: June 16, 2009
    Assignee: Seiko Epson Corporation
    Inventor: Chiharu Iriguchi
  • Patent number: 7545021
    Abstract: Semiconductor package assemblies having integrated circuits mounted onto passive electrical components. The assemblies each include an inductor having a magnetic core and an wire wrapped around the magnetic core. An integrated circuit die is positioned either on or within a recess formed in the magnetic core of the inductor. Electrical traces are formed on the magnetic core. The electrical traces are configured to electrically couple the inductive wire of the inductor with the integrated circuit die positioned on or recessed within the inductor.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: June 9, 2009
    Assignee: National Semiconductor Corporation
    Inventors: Eric Anthony Sagen, James T. Doyle
  • Patent number: 7544553
    Abstract: To form a semiconductor device, a silicon (e.g., polysilicon) gate layer is formed over a gate dielectric and a sacrificial layer (preferably titanium nitride) is formed over the silicon gate layer. The silicon gate layer and the sacrificial layer are patterned to form a gate structure. A spacer, such as an oxide sidewall spacer and a nitride sidewall spacer, is formed adjacent the sidewall of the gate structure. The semiconductor body is then doped to form a source region and a drain region that are self-aligned to the spacers. The sacrificial layer can then be removed selectively with respect to the oxide sidewall spacer, the nitride sidewall spacer and the silicon gate. A metal layer (e.g., nickel) is formed over the source region, the drain region and the silicon gate and reacted with these regions to form a silicided source contact, a silicided drain contact and a silicided gate.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: June 9, 2009
    Assignee: Infineon Technologies AG
    Inventors: Marcus Culmsee, Hermann Wendt, Lothar Doni
  • Patent number: 7544579
    Abstract: A system and method is disclosed for providing a resistor protect layer to protect a thin film resistor in a semiconductor device. A thin film resistor is formed on a dielectric layer and a resistor protect layer is placed over the thin film resistor. An etch procedure is employed to facet the corners of the resistor protect layer. The faceted corners of the resistor protect layer reduce the step height of the resistor protect layer. Then a conductor is deposited over the resistor protect layer and the dielectric layer. When portions of the conductor are subsequently etched away, the resistor protect layer protects the underlying thin film resistor from being exposed to the etch process.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: June 9, 2009
    Assignee: National Semiconductor Corporation
    Inventor: Rodney Hill
  • Patent number: 7541269
    Abstract: A tungsten polymetal gate is made by forming a gate insulation layer and a polysilicon layer on a semiconductor substrate; depositing a barrier layer on the polysilicon layer; depositing a tungsten nucleation layer on the barrier layer through an ALD process; depositing a tungsten layer on the tungsten nucleation layer through a CVD process; depositing a hard mask layer on the tungsten layer; and etching the hard mask layer, the tungsten layer, the tungsten nucleation layer, the barrier layer, the polysilicon layer, and the gate insulation layer.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: June 2, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventors: Soo Hyun Kim, Noh Jung Kwak, Baek Mann Kim, Young Jin Lee, Sun Woo Hwang, Kwan Yong Lim
  • Patent number: 7538016
    Abstract: The present invention describes a method including the steps of providing a single crystal semiconductor substrate, forming a layer of rare earth silicide on a surface of the semiconductor substrate, forming a first layer of insulating material on the layer of rare earth silicide, forming a layer of electrically conductive material on the first layer of insulating material, and forming a second layer of insulating material on the layer of electrically conductive material. In one embodiment the step of forming the layer of rare earth silicide includes depositing a layer of rare earth metal on a surface of the semiconductor substrate depositing a layer of insulating material on the layer of rare earth metal, and annealing the structure to form a layer of rare earth silicide in conjunction with the surface of the semiconductor substrate and a rare earth doped insulating layer in conjunction with the layer of insulating material.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: May 26, 2009
    Assignee: Translucent, Inc.
    Inventors: Petar B. Atanakovic, Michael Lebby
  • Patent number: 7535115
    Abstract: A method of producing a substrate that has a transfer crystalline layer transferred from a donor wafer onto a support. The transfer layer can include one or more foreign species to modify its properties. In the preferred embodiment an atomic species is implanted into a zone of the donor wafer that is substantially free of foreign species to form an embrittlement or weakened zone below a bonding face thereof, with the weakened zone and the bonding face delimiting a transfer layer to be transferred. The donor wafer is preferably then bonded at the level of its bonding face to a support. Stresses are then preferably applied to produce a cleavage in the region of the weakened zone to obtain a substrate that includes the support and the transfer layer. Foreign species are preferably diffused into the thickness of the transfer layer prior to implanbumtation or after cleavage to modify the properties of the transfer layer, preferably its electrical or optical properties.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: May 19, 2009
    Assignees: S.O.I.Tec Silicon on Insulator Technologies, Commissariat a l'Energie Atomique (CEA)
    Inventors: Fabrice Letertre, Yves Mathieu Le Vaillant, Eric Jalaguier
  • Patent number: 7534665
    Abstract: In a semiconductor device manufacturing method of the present invention, a polysilicon film and a silicon nitride film are deposited on an upper surface of an epitaxial layer. Patterning is performed so that the polysilicon film and the silicon nitride film are left in regions in which a LOCOS oxide film is to be formed. Then, using steps of the polysilicon film and the silicon nitride film as alignment marks, a diffusion layer as drain regions is formed. Subsequently, the LOCOS oxide film is formed. This manufacturing method enables the diffusion layer to be formed with high position accuracy without being affected by a shape of the LOCOS oxide film.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: May 19, 2009
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Takashi Ogura
  • Patent number: 7531393
    Abstract: An embodiment is a non-planar MOS transistor structure including a strained channel region. The combination of a non-planar MOS transistor structure, and in particular an NMOS tri-gate transistor, with the benefits of a strained channel yields improved transistor drive current, switching speed, and decreased leakage current for a given gate length width versus a non-planar MOS structure with an unstrained channel or planar MOS structure including a strained channel.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: May 12, 2009
    Assignee: Intel Corporation
    Inventors: Brian S. Doyle, Suman Datta, Been-Yih Jin, Robert Chau
  • Patent number: 7528005
    Abstract: A method of manufacturing a semiconductor device includes providing a first semiconductor chip having a plurality of pads, providing a second semiconductor chip having a plurality of pads, fixing the second semiconductor chip over a main surface of the first semiconductor chip, forming an insulating layer between the first semiconductor chip and the second semiconductor chip, forming a plurality of conductive posts over the main surface of the first semiconductor chip and a main surface of the second semiconductor chip, electrically connecting the plurality of conductive posts to the plurality of pads on the first semiconductor chip and the plurality of pads on the second semiconductor chip and covering the main surfaces of the first and second semiconductor chips with a resin, the resin partially covering the plurality of conductive posts.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: May 5, 2009
    Assignee: Oki Semiconductor Co., Ltd.
    Inventors: Yoshikazu Takahashi, Takashi Ohsumi
  • Patent number: 7528029
    Abstract: A method is provided for making a semiconductor device. In accordance with the method, a substrate (203) is provided which has first (205) and second (207) gate structures thereon. A first stressor layer (215) is formed over the substrate, and a sacrificial layer (216) is formed over the first stressor layer. A second stressor layer (219) is formed over the sacrificial layer.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: May 5, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Paul A. Grudowski, Darren V. Goedekc, John J. Hackenberg
  • Patent number: 7524716
    Abstract: A semiconductor structure is disclosed, including a substrate having therein a first well of a first conductivity type and a second well of a second conductivity type, a first MOS transistor of the first conductivity type and a second MOS transistor of the second conductivity type. The first MOS transistor is disposed on the second well, including a gate structure on the second well and a strained layer of the first conductivity type in an opening in the second well beside the gate structure. The difference between the cell parameter of a portion of the strained layer near the bottom of the opening and that of the substrate is less than the difference between the cell parameter of a portion of the strained layer apart from the bottom of the opening and that of the substrate. The second MOS transistor is disposed on the first well.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: April 28, 2009
    Assignee: United Microelectronics Corp.
    Inventors: Shyh-Fann Ting, Cheng-Tung Huang, Wen-Han Hung, Li-Shian Jeng, Kun-Hsien Lee, Tzyy-Ming Cheng, Jing-Chang Wu, Tzermin Shen
  • Patent number: 7524715
    Abstract: A memory cell transistor of a DRAM device is provided. A gate stack pattern is formed on a semiconductor substrate. A DC node and a BC node are formed substantially under lateral sides of the gate stack pattern in the semiconductor substrate. The DC node and the BC node are being electrically connected to a bit line and a storage electrode of a capacitor, respectively. A first source/drain junction region is formed under the DC node and a second source/drain junction region is formed under the BC node. The first source/drain junction region has a profile which is different from that of the second source/drain junction region.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: April 28, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Su-jin Ahn
  • Patent number: 7521283
    Abstract: A manufacturing method of a chip integrated substrate is disclosed. The manufacturing method includes a first step that forms a wiring structure to be connected to a semiconductor chip on a first core substrate; a second step that disposes the semiconductor chip on a second core substrate; and a third step that bonds the first core substrate on which the wiring structure is formed to the second core substrate on which the semiconductor chip is disposed. In addition, the manufacturing method includes a step that removes the first core substrate after the third step and a step that removes the second core substrate after the third step.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: April 21, 2009
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Yoshihiro Machida, Takaharu Yamano