Patents Examined by Michelle Adams
  • Patent number: 11231368
    Abstract: An embodiment provides a method for measuring sulfite in a solution, including: preparing a hemicyanine indicator; introducing the hemicyanine indicator to a solution containing an amount of sulfite, wherein the hemicyanine indicator reacts with the sulfite and causes a change in fluorescence of the solution; and measuring the amount of sulfite in the solution by measuring an intensity of the fluorescence. Other aspects are described and claimed.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: January 25, 2022
    Assignee: HACH COMPANY
    Inventor: Amit Das
  • Patent number: 11226274
    Abstract: Systems and methods for concentrating an analyte preparatory to analysis thereof include processing the effluent of an analyte concentrator to produce an eluent for eluting an analyte retained in the same or separate concentrator, and systems implementing the same. The analyte concentrator system connects the effluent outlet of an analyte concentrator column to an eluent generation module such that the substantially analyte-free effluent discharged from the analyte concentrator column passes fluidly into the eluent generation module. Eluent generated from the substantially analyte-free effluent in the eluent generation module is likewise substantially free of the analyte. The systems and methods can minimize and/or (substantially) eliminate background signal during analysis of the concentrated analyte.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: January 18, 2022
    Assignee: DIONEX CORPORATION
    Inventor: Kannan Srinivasan
  • Patent number: 11215559
    Abstract: A fluorescent nanocomposite which includes a thallium doped gadolinium chalcogenide having formula TlxGd1-xY, wherein x is 0.01 to 0.1, and Y is selected from the group consisting of S, Se, or Te, and a benzothiazolium salt bound to a surface of the thallium doped gadolinium chalcogenide. A method of detecting antimony ions in a fluid sample whereby the fluid sample is contacted with the fluorescent nanocomposite to form a mixture, and a fluorescence emission profile of the mixture is measured to determine a presence or absence of antimony ions in the fluid sample, wherein a reduction in intensity of a fluorescence emissions peak associated with the fluorescent nanocomposite indicates the presence of antimony ions in the fluid sample.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: January 4, 2022
    Assignee: King Abdulaziz University
    Inventors: Waleed Elsayed Mahmoud Elsayed, Ahmed Abdullah Salem Al-Ghamdi, Yusuf Abdulaziz Al-Turki
  • Patent number: 11209366
    Abstract: A fluorescent nanocomposite which includes a thallium doped gadolinium chalcogenide having formula TlxGd1-xY, wherein x is 0.01 to 0.1, and Y is selected from the group consisting of S, Se, or Te, and a benzothiazolium salt bound to a surface of the thallium doped gadolinium chalcogenide. A method of detecting antimony ions in a fluid sample whereby the fluid sample is contacted with the fluorescent nanocomposite to form a mixture, and a fluorescence emission profile of the mixture is measured to determine a presence or absence of antimony ions in the fluid sample, wherein a reduction in intensity of a fluorescence emissions peak associated with the fluorescent nanocomposite indicates the presence of antimony ions in the fluid sample.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: December 28, 2021
    Assignee: King Abdulaziz University
    Inventors: Waleed Elsayed Mahmoud Elsayed, Ahmed Abdullah Salem Al-Ghamdi, Yusuf Abdulaziz Al-Turki
  • Patent number: 11208431
    Abstract: Provided are a novel internal standard useful in the measurement of androgens, a method capable of measuring the androgen in a highly selective and highly sensitive (accurate) manner using liquid chromatography mass spectrometry with simplified pretreatments, and a method for diagnosis of a disease using the androgen measurement method. The novel stable isotope-labeled compound is synthesized by performing reduction reaction in a specific solvent. An androgen is measured using this novel stable isotope-labeled compound as an IS.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: December 28, 2021
    Assignee: ASKA PHARMACEUTIAL CO., LTD.
    Inventors: Koichi Minato, Yusuke Ito
  • Patent number: 11209365
    Abstract: A fluorescent nanocomposite which includes a thallium doped gadolinium chalcogenide having formula TlxGd1-xY, wherein x is 0.01 to 0.1, and Y is selected from the group consisting of S, Se, or Te, and a benzothiazolium salt bound to a surface of the thallium doped gadolinium chalcogenide. A method of detecting antimony ions in a fluid sample whereby the fluid sample is contacted with the fluorescent nanocomposite to form a mixture, and a fluorescence emission profile of the mixture is measured to determine a presence or absence of antimony ions in the fluid sample, wherein a reduction in intensity of a fluorescence emissions peak associated with the fluorescent nanocomposite indicates the presence of antimony ions in the fluid sample.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: December 28, 2021
    Assignee: King Abdulaziz University
    Inventors: Waleed Elsayed Mahmoud Elsayed, Ahmed Abdullah Salem Al-Ghamdi, Yusuf Abdulaziz Al-Turki
  • Patent number: 11193948
    Abstract: Provided is a method for quantifying vitamin D, with the vitamin D contained in a biological sample being derivatized with a derivatization reagent and being measured with a mass spectrometer, the method including, a derivatization step of derivatizing n number of samples by using n types of 4-(4?-dimethylaminophenyl)-1,2,4-triazoline-3,5-dione (DAPTAD) isotopologues respectively as derivatization reagents, a mixing step of mixing the n types of derivatization samples obtained in the derivatization step, and a quantitative analysis step of subjecting each of the n types of vitamin D derivatives contained in the mixed sample obtained in the mixing step to quantitative analysis using a mass spectrometer.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: December 7, 2021
    Assignees: Tokyo University of Science, National University Corporation Chiba University, JEOL Ltd.
    Inventors: Tatsuya Higashi, Shoujiro Ogawa, Fumio Nomura, Mamoru Satoh, Masaki Takiwaki
  • Patent number: 11187694
    Abstract: An automated analyzer for reagent cards having a leading end, a trailing end and a length between the leading end and the trailing end comprises a travel surface assembly having a card travel surface and an edge. A test analyzing mechanism is adjacent to the travel surface, and a waste receptacle is adjacent to the edge below the travel surface. The waste receptacle has a side and a waste cavity. A ramp member positioned below the travel surface has an end and a sloped surface, and is movable between an extended position where the sloped surface extends into the waste cavity, and a retracted position where the end is spaced from the side a distance greater than the length of the reagent card. A moving mechanism operably coupled with the ramp member is configured to move the ramp member between the extended position and the retracted position.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: November 30, 2021
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Kenneth Galano, Michael Parker, Aaron Sung-Lien Tang
  • Patent number: 11187690
    Abstract: A method for detecting for the presence of H2S or HS? anion in a system, comprising contacting a sample from the system with a compound, or a protonate or salt thereof, having a structure represented by: wherein Y represents an aromatic group or a substituted aromatic group; n is 1 or 2; R is independently H, alkyl, substituted alkyl, a polyether moiety, carboxyl, substituted carboxyl, carbamate, substituted carbonate, carbonyloxy, alkoxy, substituted alkoxy, haloalkyl, halogen, nitro, amino, amido, aryloxy, cyano, hydroxyl, or sulfonyl; R1 is H, substituted lower alkyl, lower alkyl, substituted aralkyl or aralkyl; R2 is selected from H, acyl, substituted aralkyl, aralkyl, phosphonyl, —SO2R3; —C(O)R5; —C(O)OR7 or —C(O)NR9R10; R3; R5; R7; R9 and R10 are each independently selected from H, substituted lower alkyl, lower alkyl, substituted aralkyl, aralkyl, substituted aryl or aryl.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: November 30, 2021
    Assignee: University of Oregon
    Inventors: Michael M. Haley, Michael Pluth, Darren W. Johnson, Sean Fontenot
  • Patent number: 11181535
    Abstract: Methods are provided for synthesizing mixtures of lipids that are representative of the structural diversity of the lipids present in samples of interest. The complex mixtures of lipids produced according to the methods of the present disclosure can be used as internal standards for detecting and quantifying the lipids in samples of interest. Kits including the internal standards and instructions for their use in the detection and quantification of lipids in samples of interest are also provided.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: November 23, 2021
    Assignee: Metabolon, Inc.
    Inventor: Steven Watkins
  • Patent number: 11169163
    Abstract: A method for performing flexible liquid handling processes among a plurality of consumables includes moving consumables by at least one arm having a magnetic interface device, connecting the at least one arm from the consumables, based on magnetic attraction utilizing said magnetic interface device, and aspirating and dispensing liquids on the consumables by at least one static or quasi-static pipette. The aspiration and dispensing actions are performed without displacement of the pipettes. The method further includes sensing, by the at least one arm, magnetic presence of a matching consumable connector or magnetic vector field modified by a presence of a matching consumable connector. The method includes disconnecting the at least one arm from the consumables based on a repulsive magnetic force.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: November 9, 2021
    Assignee: ANDREW ALLIANCE S.A.
    Inventor: Piero Zucchelli
  • Patent number: 11168249
    Abstract: Polydentate polycyclic compounds of various formulas are disclosed herein. The compounds are useful for ratiometric luminescence. Significantly, the compounds will luminesce at different wavelengths/colors, depending on the analyte (metal ion, acid, or boron-containing compound) it is combined with. Thus, a single compound can provide different luminescent outputs based on the analyte, rather than requiring an entire set of structurally different compounds to detect each analyte or to generate a desired color output.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: November 9, 2021
    Inventor: Andres Zavaleta Fernandez de Cordova
  • Patent number: 11162957
    Abstract: A blood analyzing method includes optically measuring a first calibration sample prepared from a fibrin/fibrinogen degradation product (FDP) measurement reagent and a first calibrator containing D-dimer (DD) and having a first value relating to the ratio of the content of FDP to the content of DD, acquiring first calculation data based on temporal change of optical information of the first calibration measurement sample, performing optical measurement of a second calibration measurement sample prepared from FDP measurement reagent and a second calibrator containing DD and having a second value that is different from the first value, acquiring second calculated data based on a temporal change in optical information of the second calibration measurement sample, and acquiring calibration curve information indicating the relationship between the calculation data and the value relating to the amount of DD.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: November 2, 2021
    Assignee: Sysmex Corporation
    Inventor: Junki Hayasaki
  • Patent number: 11162926
    Abstract: In a chemiluminescence type nitrogen oxide concentration meter, a mixed gas of air with its moisture adsorbed by an adsorption apparatus and air that through a fifth flow path without the adsorption apparatus in between is flown into an ozone generator. Therefore, ozone can be generated using air of proper humidity in the ozone generator 7. As a result, ozone can be efficiently generated while suppressing occurrence of metal contamination in the ozone generator 7. Then, in the reaction unit 8, nitrogen oxides in the sample gas are made to appropriately show chemiluminescence using the ozone, and in the detector 9, the intensity of light generated in the reaction unit 8 is detected. Furthermore, in the control unit 10, the concentration of nitrogen oxides in the sample gas is measured, based on the intensity of light detected by the detector 9.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: November 2, 2021
    Assignee: SHIMADZU CORPORATION
    Inventor: Ryo Tanabe
  • Patent number: 11156619
    Abstract: Fluorescent pH sensors are provided. The fluorescent pH sensor comprises a copolymer for sensing pH and a polymerized form of N-(2-hydroxypropyl)methacrylamide (HPMA) or 2-hydroxyethyl methacrylate (HEMA). The probe for sensing pH has formula (I): wherein R1 and R2 are as defined herein. The fluorescent pH sensors may be used in determining the pH of a sample and detecting extracellular pH in a sample. Methods for preparing the fluorescent pH sensors and the probe for sensing pH are also provided.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: October 26, 2021
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Liqiang Zhang, Xiangxing Kong, Yanqing Tian, Deirdre Meldrum, Fengyu Su
  • Patent number: 11143592
    Abstract: A fluorescent nanocomposite which includes a thallium doped gadolinium chalcogenide having formula TlxGd1-xY, wherein x is 0.01 to 0.1, and Y is selected from the group consisting of S, Se, or Te, and a benzothiazolium salt bound to a surface of the thallium doped gadolinium chalcogenide. A method of detecting antimony ions in a fluid sample whereby the fluid sample is contacted with the fluorescent nanocomposite to form a mixture, and a fluorescence emission profile of the mixture is measured to determine a presence or absence of antimony ions in the fluid sample, wherein a reduction in intensity of a fluorescence emissions peak associated with the fluorescent nanocomposite indicates the presence of antimony ions in the fluid sample.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: October 12, 2021
    Assignee: King Abdulaziz University
    Inventors: Waleed Elsayed Mahmoud Elsayed, Ahmed Abdullah Salem Al-Ghamdi, Yusuf Abdulaziz Al-Turki
  • Patent number: 11118150
    Abstract: A layered, microfluidic array is disclosed. The array has a first layer with a culture channels extending in a first longitudinal direction. Each culture channel includes multiple traps that entrap cell or tissue samples. The array also has a second layer with microfluidic channels extending in a second longitudinal direction that is orthogonal the first longitudinal direction. A third layer, disposed between the first layer and the second layer, has pores arranged within the third layer such that each nest is vertically stacked above, and fluidly connected with, a corresponding culture chamber in the first layer. Each nest is fluidly isolated from adjacent nests by a fluid impermeable region of the third layer such that horizontal diffusion of water within the third layer is prevented.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: September 14, 2021
    Assignees: Research Foundation of the City University of New York, Memorial Sloan Kettering Cancer Center
    Inventors: Sihong Wang, A. H. Rezwanuddin Ahmed, Xuejun Jiang, Chun-wei Chi, Chenghai Li
  • Patent number: 11085906
    Abstract: A composition for dry reagent colorimetric sensing of nanoparticles in aqueous media, including sodium borohydride (NaBH4), methylene blue (MB), and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) in the form of a powdered mixture. The composition may be formed by combining MB, HEBES, and water to yield an aqueous mixture, removing water from the aqueous mixture to yield a solid mixture, and combining NaBH4 powder with the solid mixture to yield the composition. The composition may be used to detect metallic nanoparticles an aqueous solution by combining the composition with an aqueous solution to yield a test solution, and assessing a concentration of the metallic nanoparticles in the test solution based on absorbance of light by the test solution. The composition may be provided in an assay kit for sensing nanoparticles in aqueous media.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: August 10, 2021
    Assignees: Arizona Board of Regents on behalf of Arizona State University, University of Washington
    Inventors: Paul K. Westerhoff, Xiangyu Bi, Shahnawaz Sinha, Jonathan D. Posner, Charlie Corredor
  • Patent number: 11085891
    Abstract: The present invention provides a method for detecting synthetic indole and indazole cannabinoids in a sample known or suspected to contain a synthetic indole or indazole cannabinoid in the absence of chromatography. A deuterated solvent is added to the solid sample, creating a suspension. The synthetic cannabinoid is detected in the suspension by analysis of the sample NMR spectrum. When one-dimensional proton NMR is used, detection of a first peak between 8.00 and 8.50 ppm and a second peak between 4.00 and 4.40 ppm, indicates the presence of a synthetic indole or indazole cannabinoid. When two-dimensional Correlation Spectroscopy (COSY) NMR is used, detection of a first spot between 6.50 and 9.00 ppm and a second spot between 1.50 and 4.50 ppm indicates the presence of a synthetic indole or indazole cannabinoid.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: August 10, 2021
    Assignee: Hofstra University
    Inventors: Ling Huang, Michael Anthony Marino, Brandy Voyer
  • Patent number: 11067550
    Abstract: A method for providing a calibration test gas sample includes identifying a first test canister containing a standard test gas including an ionic gas. A chemical formulation of the standard test gas includes a cation and an anion. The method further includes replacing the first test canister with a second test canister containing an improved test gas. A chemical formulation of the improved test gas includes a replacement atom comprising one of a heavier isotope of one of the cation and the anion.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: July 20, 2021
    Inventors: Ferrel D. Moore, James Robert Moore