Patents Examined by Monica D. Harrison
  • Patent number: 11456282
    Abstract: The present disclosure relates to a radio frequency device that includes a transfer device die and a multilayer redistribution structure underneath the transfer device die. The transfer device die includes a device region with a back-end-of-line (BEOL) portion and a front-end-of-line (FEOL) portion over the BEOL portion and a transfer substrate. The FEOL portion includes isolation sections and an active layer surrounded by the isolation sections. A top surface of the device region is planarized. The transfer substrate including a porous silicon (PSi) region resides over the top surface of the device region. Herein, the PSi region has a porosity between 1% and 80%. The multilayer redistribution structure includes a number of bump structures, which are at a bottom of the multilayer redistribution structure and electrically coupled to the FEOL portion of the transfer device die.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: September 27, 2022
    Assignee: Qorvo US, Inc.
    Inventors: Julio C. Costa, Michael Carroll
  • Patent number: 11450760
    Abstract: Novel and useful quantum structures having a continuous fully depleted well with control gates that form two quantum dot on either side of the gate. Appropriate potentials are applied to the well and control gate to control quantum tunneling between quantum dots thereby enabling quantum operations to occur. Qubits are realized by modulating applied gate potential to control tunneling through a quantum transport path between two or more sections of the well. Complex structures with a higher number of quantum dots per continuous well and a larger number of wells can be fabricated. Both planar and 3D FinFET semiconductor processes are used to build well to gate and well to well tunneling quantum structures. An injection device permits tunneling of a single quantum particle from a classic side to a quantum side of the device. Detection interface devices detect the presence or absence of a particle destructively or nondestructively.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: September 20, 2022
    Assignee: Equal1.Labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 11448932
    Abstract: An array substrate and a manufacturing method thereof in the embodiment of the present invention can complete the process of the array substrate with the touch function by using six photolithography processes, thereby simplifying the production process, saving cost, and shortening the production cycle.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: September 20, 2022
    Assignee: WUHAN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Yuan Yan, Jiyue Song
  • Patent number: 11450748
    Abstract: A semiconductor device and a manufacturing method thereof are provided. The semiconductor device has a semiconductor layer and a gate structure located on the semiconductor layer. The semiconductor device has source and drain terminals disposed on the semiconductor layer, and a binary oxide layer located between the semiconductor layer and the source and drain terminals.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: September 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Georgios Vellianitis, Gerben Doornbos, Marcus Johannes Henricus Van Dal
  • Patent number: 11450739
    Abstract: A semiconductor structure has a substrate including silicon and a layer of relaxed buffer material on the substrate with a thickness no greater than 300 nm. The buffer material comprises silicon and germanium with a germanium concentration from 20 to 45 atomic percent. A source and a drain are on top of the buffer material. A body extends between the source and drain, where the body is monocrystalline semiconductor material comprising silicon and germanium with a germanium concentration of at least 30 atomic percent. A gate structure is wrapped around the body.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: September 20, 2022
    Assignee: Intel Corporation
    Inventors: Glenn Glass, Anand Murthy, Cory Bomberger, Tahir Ghani, Jack Kavalieros, Siddharth Chouksey, Seung Hoon Sung, Biswajeet Guha, Ashish Agrawal
  • Patent number: 11444085
    Abstract: A semiconductor structure for a DRAM is described having multiple layers of arrays of thyristor memory cells with silicon-germanium base regions. Memory cells in a vertical string extending through the layers have an electrical connection to one terminal of the memory cells in that string. Word lines couple the strings together. Each layer of the array also includes bit line connections to memory cells on that layer. Select transistors enable the use of folded bit lines. Methods of fabricating the array are described.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: September 13, 2022
    Assignee: TC Lab, Inc.
    Inventor: Harry Luan
  • Patent number: 11444186
    Abstract: A semiconductor device includes a semiconductor substrate, first and second trench electrodes formed on the semiconductor substrate, a floating layer of a first conductivity type formed around the first and second trench electrodes, a floating separation layer of a second conductivity type formed between the first and second trench electrodes and contacted with the floating layer of the first conductivity type and a floating layer control gate disposed on the floating separation layer of the second conductivity type.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: September 13, 2022
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventor: Nao Nagata
  • Patent number: 11444173
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The method includes forming a fin structure over a substrate. The method also includes forming a gate structure over the fin structure. The method further includes forming fin spacers over sidewalls of the fin structure and gate spacers over sidewalls of the gate structure. In addition, the method includes forming a source/drain structure over the fin structure and depositing a dummy material layer to cover the source/drain structure. The dummy material layer is removed faster than the gate spacers during the removal of the dummy material layer. The method further includes forming a salicide layer over the source/drain structure and the fin spacers, and forming a contact over the salicide layer. The dummy material layer includes Ge, amorphous silicon or spin-on carbon.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: September 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsiang-Ku Shen, Jin-Mu Yin, Tsung-Chieh Hsiao, Chia-Lin Chuang, Li-Zhen Yu, Dian-Hau Chen, Shih-Wei Wang, De-Wei Yu, Chien-Hao Chen, Bo-Cyuan Lu, Jr-Hung Li, Chi-On Chui, Min-Hsiu Hung, Hung-Yi Huang, Chun-Cheng Chou, Ying-Liang Chuang, Yen-Chun Huang, Chih-Tang Peng, Cheng-Po Chau, Yen-Ming Chen
  • Patent number: 11444084
    Abstract: A semiconductor structure for a DRAM is described having multiple layers of arrays of thyristor memory cells and associated peripheral circuitry. Memory cells in a vertical string extending through the layers have an electrical connection to one terminal of the memory cells in that string. Word lines couple the strings together. Each layer of the array also includes bit line connections to memory cells on that layer. Methods of fabricating the array are described.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: September 13, 2022
    Assignee: TC Lab, Inc.
    Inventor: Harry Luan
  • Patent number: 11437320
    Abstract: A semiconductor device includes a substrate including a first cell region, a second cell region adjacent to the first cell region in a first direction, and a comparison region adjacent the first and second cell regions in a second direction, a bit line in a first metal level on the substrate and extending in the first direction, and a first ground rail in a second metal level different from the first metal level. The first ground rail comprises a first sub-ground rail extending in the second direction on the first cell region, a second sub-ground rail extending in the second direction on the second cell region, a third sub-ground rail connecting the first sub-ground rail to the second sub-ground rail on the first and second cell regions, and a fourth sub-ground rail that branches off from the third sub-ground rail and extends in the second direction.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: September 6, 2022
    Inventors: Suk Youn, Chan Ho Lee, Uk Rae Cho, Woo jin Jung, Kyu Won Choi
  • Patent number: 11437405
    Abstract: Embodiments herein describe techniques for an integrated circuit (IC). The IC may include a first transistor, an insulator layer above the first transistor, and a second transistor above the insulator layer. The first transistor may be a p-type transistor including a channel in a substrate, a first source electrode, and a first drain electrode. A first metal contact may be coupled to the first source electrode, while a second metal contact may be coupled to the first drain electrode. The insulator layer may be next to the first metal contact, and next to the second metal contact. The second transistor may include a second source electrode, and a second drain electrode. The second source electrode may be coupled to the first metal contact, or the second drain electrode may be coupled to the second metal contact. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: September 6, 2022
    Assignee: Intel Corporation
    Inventors: Gilbert Dewey, Patrick Morrow, Aaron Lilak, Willy Rachmady, Anh Phan, Ehren Mannebach, Hui Jae Yoo, Abhishek Sharma, Van H. Le, Cheng-Ying Huang
  • Patent number: 11437525
    Abstract: A silicon carbide power diode device has a silicon carbide substrate on which a silicon carbide epitaxial layer with an active region is provided. A Schottky metal layer is on the active region, and a first electrode layer is on the Schottky metal layer. A first ohmic contact is on the silicon carbide substrate, and a second electrode layer is on the first ohmic contact. The active region of the silicon carbide epitaxial layer has a plurality of first P-type regions, a plurality of second P-type regions, and N-type regions. The first P-type regions and the second P-type regions lacking an ohmic contact are spaced apart with dimensions of the second P-type regions being minimized and the N-type regions being maximized for given dimensions of the first P-type region. Second ohmic contacts are located between the first P-type region and the Schottky metal layer.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: September 6, 2022
    Assignee: HUNAN SANAN SEMICONDUCTOR CO., LTD.
    Inventors: Yonghong Tao, Zhidong Lin, Zhigao Peng
  • Patent number: 11437469
    Abstract: A semiconductor structure includes semiconductor layers disposed over a substrate and oriented lengthwise in a first direction, a metal gate stack disposed over the semiconductor layers and oriented lengthwise in a second direction perpendicular to the first direction, where the metal gate stack includes a top portion and a bottom portion that is interleaved with the semiconductor layers, source/drain features disposed in the semiconductor layers and adjacent to the metal gate stack, and an isolation structure protruding from the substrate, where the isolation structure is oriented lengthwise along the second direction and spaced from the metal gate stack along the first direction, and where the isolation structure includes a dielectric layer and an air gap.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: September 6, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Chia-Ta Yu, Hsiao-Chiu Hsu, Feng-Cheng Yang
  • Patent number: 11437370
    Abstract: The present application discloses a semiconductor device with multiple threshold voltages and a method for fabricating the semiconductor device with the multiple threshold voltages. The semiconductor device includes a substrate, a first gate structure positioned in the substrate and having a first depth and a first threshold voltage, and a second gate structure positioned in the substrate and having a second depth and a second threshold voltage. The first depth is greater than the second depth, and the first threshold voltage is different from the second threshold voltage.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: September 6, 2022
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Yi-Hsien Chou
  • Patent number: 11430814
    Abstract: A stacked device structure includes a first device structure including a first body that includes a semiconductor material, and a plurality of terminals coupled with the first body. The stacked device structure further includes an insulator between the first device structure and a second device structure. The second device structure includes a second body such as a fin structure directly above the insulator. The second device structure further includes a gate coupled to the fin structure, a spacer including a dielectric material adjacent to the gate, and an epitaxial structure adjacent to a sidewall of the fin structure and between the spacer and the insulator. A metallization structure is coupled to a sidewall surface of the epitaxial structure, and further coupled with one of the terminals of the first device.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: August 30, 2022
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Anh Phan, Patrick Morrow, Willy Rachmady, Gilbert Dewey, Jessica M. Torres, Kimin Jun, Tristan A. Tronic, Christopher J. Jezewski, Hui Jae Yoo, Robert S. Chau, Chi-Hwa Tsang
  • Patent number: 11430743
    Abstract: A transistor includes a semiconductor substrate having first and second terminals. An interconnect structure, on an upper surface of the substrate, is formed of layers of dielectric material and electrically conductive material. The conductive material includes a first pillar connected with the first terminal, a second pillar connected with the second terminal, and a shield system between the first and second pillars. The shield system includes forked structures formed in at least two conductive layers of the interconnect structure and at least partially surrounding segments of the second pillar. The shield system may additionally include shield traces formed in a first conductive layer positioned between gate fingers and the first pillars and/or the shield system may include shield runners that are located in an electrically conductive layer that is below a topmost electrically conductive layer with the first pillar being connected to a runner in the topmost conductive layer.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: August 30, 2022
    Assignee: NXP USA, Inc.
    Inventors: Humayun Kabir, Michele Lynn Miera, Charles John Lessard, Ibrahim Khalil
  • Patent number: 11424369
    Abstract: A semiconductor device having a large on-state current and high reliability is provided. The semiconductor device includes a first insulator, a first oxide over the first insulator, a second oxide over the first oxide, a third oxide and a fourth oxide over the second oxide, a first conductor over the third oxide, a second conductor over the fourth oxide, a fifth oxide over the second oxide, a second insulator over the fifth oxide, and a third conductor over the second insulator. The fifth oxide is in contact with a top surface of the second oxide, a side surface of the first conductor, a side surface of the second conductor, a side surface of the third oxide, and a side surface of the fourth oxide. The second oxide contains In, an element M, and Zn. The first oxide and the fifth oxide each contain at least one of constituent elements included in the second oxide. The third oxide and the fourth oxide each contain the element M.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: August 23, 2022
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Haruyuki Baba, Naoki Okuno, Yoshihiro Komatsu, Toshikazu Ohno
  • Patent number: 11424344
    Abstract: A method of manufacturing a trench MOSFET can include: forming a trench extending from an upper surface of a semiconductor base layer to internal portion of the semiconductor base layer; forming a first insulating layer covering sidewall and bottom surfaces of the trench and the upper surface of the semiconductor base layer; forming a shield conductor filling a lower portion of the trench, where the first insulating layer separates the shield conductor from the semiconductor base layer; forming a second insulating layer covering a top surface of the shield conductor, where the first insulating layer separates the second insulating layer from the semiconductor base layer, and the first and second insulating layers conformally form a dielectric layer; and removing the dielectric layer located on the upper surface of the semiconductor base layer and located on the upper sidewall surface of the trench.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: August 23, 2022
    Assignee: HANGZHOU SILICON-MAGIC SEMICONDUCTOR TECHNOLOGY CO., LTD.
    Inventors: Jiakun Wang, Bing Wu
  • Patent number: 11417632
    Abstract: The present disclosure relates to a radio frequency device that includes a transfer device die and a multilayer redistribution structure underneath the transfer device die. The transfer device die includes a device region with a back-end-of-line (BEOL) portion and a front-end-of-line (FEOL) portion over the BEOL portion and a transfer substrate. The FEOL portion includes isolation sections and an active layer surrounded by the isolation sections. A top surface of the device region is planarized. The transfer substrate including a porous silicon (PSi) region resides over the top surface of the device region. Herein, the PSi region has a porosity between 1% and 80%. The multilayer redistribution structure includes a number of bump structures, which are at a bottom of the multilayer redistribution structure and electrically coupled to the FEOL portion of the transfer device die.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: August 16, 2022
    Assignee: Qorvo US, Inc.
    Inventors: Julio C. Costa, Michael Carroll
  • Patent number: 11411087
    Abstract: Embodiments of the disclosure provide an integrated circuit (IC) structure with a high impedance semiconductor material between a substrate and transistor. The IC structure may include: a substrate, a high impedance semiconductor material on a portion of the substrate, and a transistor on a top surface of the high impedance semiconductor material. The transistor includes a semiconductor channel region horizontally between a first source/drain (S/D) region and a second S/D region. The high impedance semiconductor material is vertically between the transistor and the substrate; a first insulator region is on the substrate and horizontally adjacent the first S/D region; and a first doped well is on the substrate and horizontally adjacent the first insulator region. The first insulator region is horizontally between the first doped well and the transistor.
    Type: Grant
    Filed: January 18, 2021
    Date of Patent: August 9, 2022
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: John J. Ellis-Monaghan, Anupam Dutta, Satyasuresh V. Choppalli, Venkata N. R. Vanukuru, Michel Abou-Khalil