Patents Examined by Nam X. Nguyen
  • Patent number: 7638022
    Abstract: A magnetron source for producing a magnetic field near a surface of a target in a deposition system include a first magnet, a second magnet separated by a gap from the first magnet along a first direction, and a target holder configured to hold the target in the gap between the first magnet and the second magnet. The target includes a sputtering surface from which target material can be sputtered and deposited on a substrate. The target holder is so configured that the sputtering surface is substantially parallel to the first direction and the first magnet and the second magnet can produce a magnetic field near a surface of the target.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: December 29, 2009
    Assignee: Ascentool, Inc
    Inventor: George Xinsheng Guo
  • Patent number: 7638027
    Abstract: A method for fabricating a microstructure array, such as a microlens array, and a mold for forming the microlens array, includes the steps of forming an array of microstructures with a curved profile in a discrete form on a substrate, and uniformly forming a continuous layer on the substrate and the discrete microstructures. Optically-unusable regions between the discrete microstructures, such as microlenses, can be readily reduced or eliminated by forming the continuous layer until flat portions between the microstructures disappear.
    Type: Grant
    Filed: February 24, 2005
    Date of Patent: December 29, 2009
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takayuki Teshima, Takayuki Yagi
  • Patent number: 7638028
    Abstract: A method of processing a probe element includes (a) providing a probe element comprising a first conductive material, and (b) coating only a tip portion of the probe element with a second conductive material.
    Type: Grant
    Filed: August 3, 2005
    Date of Patent: December 29, 2009
    Assignee: SV Probe Pte. Ltd.
    Inventors: Bahadir Tunaboylu, Edward L. Malantonio, David T. Beatson, Andrew Hmiel
  • Patent number: 7635810
    Abstract: A interconnected arrangement of photovoltaic cells is readily and efficiently achieved by using a unique interconnecting strap. The strap comprises electrically conductive fingers which contact the top light incident surface of a first cell and extend to an interconnect region of the strap. The interconnect region may include through holes which allow electrical communication between top and bottom surfaces of the interconnect region. In one embodiment, the electrically conductive surface of the fingers is in electrical communication with an electrically conductive surface formed on the opposite side of the strap through the through holes of the interconnect region. The interconnection strap may comprise a laminating film to facilitate manufacture and assembly of the interconnected arrangement.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: December 22, 2009
    Inventor: Daniel Luch
  • Patent number: 7633007
    Abstract: A solar cell is described that comprises: (a) a semiconductor charge separation material; (b) at least one electrode connected to the charge separation material; and (c) a light-harvesting film on the charge separation material, the light-harvesting film comprising non-covalently coupled, self-assembled units of porphyrinic macrocycles. The porphyrinic macrocycles preferably comprise: (i) an intramolecularly coordinated metal; (ii) a first coordinating substituent; and (iii) a second coordinating substituent opposite the first coordinating substituent. The porphyrinic macrocycles can be assembled by repeating intermolecular coordination complexes of the metal, the first coordinating substituent and the second coordinating substituent.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: December 15, 2009
    Assignee: North Carolina State University
    Inventors: Jonathan S. Lindsey, Muthiah Chinnasamy, Dazhong Fan
  • Patent number: 7632385
    Abstract: A reference electrode for potentiometric measurements has a housing (2) with a hollow space (4) containing a liquid reference electrolyte (6) as well as a conductor element (8) immersed in the reference electrolyte. In addition, the housing has a diaphragm (12) through which the reference electrolyte can be brought into contact with a measuring medium (10) outside of the housing. Furthermore, means are provided to effect an outflow of the reference electrolyte through the diaphragm. A first electrical contact element (20, 36) is arranged in the hollow space in such a manner that the contact element is immersed in the reference electrolyte as long as the fill level (18) of the reference electrolyte does not fall below a threshold value (FS), and that the contact element is not immersed in the reference electrolyte if the fill level falls short of the threshold value.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: December 15, 2009
    Assignee: Mettler-Toledo AG
    Inventor: Philippe Ehrismann
  • Patent number: 7632390
    Abstract: A process for electropolishing metals and metalloids and their alloys, intermetallic compounds, metal-matrix composites, carbides and nitrides in an electrolytic cell utilizing an externally applied magnetic force to enhance the dissolution process. The electropolishing process is maintained under oxygen evolution to achieve an electropolished surface of the work piece exhibiting reduced microroughness, better surface wetting and increased surface energy, reduced and more uniform corrosion resistance, minimization of external surface soiling and improved cleanability in shorter time periods.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: December 15, 2009
    Inventor: Ryszard Rokicki
  • Patent number: 7629531
    Abstract: A thermoelectric generator has a top plate disposed in spaced relation above a bottom plate. A series of foil segments are electrically and mechanically connected end-to-end to generate a foil assembly that is spirally wound and in thermal contact with the bottom and top plates. Each foil segment comprises a substrate having a series of spaced alternating n-type and p-type thermoelectric legs disposed in parallel arrangement on the front substrate surface. Each of the n-type and p-type legs is formed of a bismuth telluride-based thermoelectric material having a thickness of about 10-100 microns, a width of about 10-100 microns and a length of about 100-500 microns. The alternating n-type and p-type thermoelectric legs are electrically connected in series and thermally connected in parallel such that a temperature differential between the bottom and top plates results in the generation of power.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: December 8, 2009
    Assignee: Digital Angel Corporation
    Inventor: Ingo Stark
  • Patent number: 7625472
    Abstract: A plasma-assisted sputter deposition system includes a reactor 1 into which a process gas is introduced; a doughnut-shaped electrode to be sputtered by plasma, in which a lower surface thereof is angled to a surface of a wafer; a spinning plate that spin on its central axis while moving over a circle above the doughnut-shaped electrode, in which the spinning plate contains magnet arrangement; an electrical power sources connected to the doughnut-shaped electrode, and a wafer holder for placing a wafer for film deposition, which is at rest during the film deposition.
    Type: Grant
    Filed: January 11, 2005
    Date of Patent: December 1, 2009
    Assignee: Canon Anelva Corporation
    Inventor: Sunil Wickramanayaka
  • Patent number: 7625469
    Abstract: A nanoelectrode array comprises a plurality of nanoelectrodes wherein the geometric dimensions of the electrode controls the electrochemical response, and the current density is independent of time. By combining a massive array of nanoelectrodes in parallel, the current signal can be amplified while still retaining the beneficial geometric advantages of nanoelectrodes. Such nanoelectrode arrays can be used in a sensor system for rapid, non-contaminating field analysis. For example, an array of suitably functionalized nanoelectrodes can be incorporated into a small, integrated sensor system that can identify many species rapidly and simultaneously under field conditions in high-resistivity water, without the need for chemical addition to increase conductivity.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: December 1, 2009
    Assignee: Sandia Corporation
    Inventors: William G. Yelton, Michael P. Siegal
  • Patent number: 7626114
    Abstract: A thermoelectric power supply converts thermal energy into a high power output with voltages in the Volt-range for powering a microelectronic device and comprises an in-plane thermoelectric generator, a cross-plane thermoelectric generator, an initial energy management assembly, a voltage converter and a final energy management assembly. The in-plane thermoelectric generator produces a high thermoelectric voltage at low power output. The initial energy management assembly rectifies and limits the thermoelectric voltage and stores and releases power to the voltage converter. The cross-plane thermoelectric generator generates a high power output at low thermoelectric voltage. Once activated by the in-plane thermoelectric generator, the voltage converter multiplies the low thermoelectric voltage output of the cross-plane thermoelectric generator.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: December 1, 2009
    Assignee: Digital Angel Corporation
    Inventor: Ingo Stark
  • Patent number: 7625475
    Abstract: A microfluidic pump has an outer housing such as a capillary tube, a nanotube, and an ionic fluid or alcohol. The nanotube is placed inside the capillary tube, and the capillary tube is filled with the ionic fluid or alcohol. A voltage source is connected to the nanotube, and upon application of a voltage to the nanotube, the ionic fluid or alcohol is pumped through the capillary tube.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: December 1, 2009
    Assignee: Lockheed Martin Corporation
    Inventor: Robert J. Howard
  • Patent number: 7622666
    Abstract: The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: November 24, 2009
    Assignee: Soliant Energy Inc.
    Inventor: Braden E. Hines
  • Patent number: 7622024
    Abstract: A substantially uniform layer of a metal is electroplated onto a work piece having a seed layer thereon. This is accomplished by employing a “high resistance ionic current source,” which solves the terminal problem by placing a highly resistive membrane (e.g., a microporous ceramic or fretted glass element) in close proximity to the wafer, thereby swamping the system's resistance. The membrane thereby approximates a constant current source. By keeping the wafer close to the membrane surface, the ionic resistance from the top of the membrane to the surface is much less than the ionic path resistance to the wafer edge, substantially compensating for the sheet resistance in the thin metal film and directing additional current over the center and middle of the wafer.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: November 24, 2009
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Jonathan D. Reid
  • Patent number: 7618522
    Abstract: The present invention is directed to a method of reducing the effects of interfering compounds in the measurement of analytes and more particularly to a method of reducing the effects of interfering compounds in a system wherein the test strip utilizes two or more working electrodes. In one embodiment of the present invention, a first potential is applied to a first working electrode and a second potential, having the same polarity but a greater magnitude than the first potential, is applied to a second working electrode.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: November 17, 2009
    Assignee: Lifescan Scotland Limited
    Inventor: Oliver William Hardwicke Davies
  • Patent number: 7618525
    Abstract: An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: November 17, 2009
    Assignee: University of Southern California
    Inventor: Adam L. Cohen
  • Patent number: 7618521
    Abstract: A split magnet ring, particularly useful in a magnetron plasma reactor sputter depositing tantalum or tungsten or other barrier metal into a via and also resputter etching the deposited material from the bottom of the via onto the via sidewalls. The magnet ring includes two annular magnet rings composed of the same axial polarity separated by a non-magnetic spacing of at least the axial length of one magnet and associated poles. A small unbalanced magnetrons rotates about the back of the target having an outer pole of the same polarity as the ring magnets surrounding a weaker inner pole of the opposite pole.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: November 17, 2009
    Assignee: Applied Materials, Inc.
    Inventor: Xinyu Fu
  • Patent number: 7615141
    Abstract: An electrochemical printing system (100, 200) and method are disclosed having a printer head (130, 230) that expels a small jet of electrolyte (112) towards a conductive substrate (92) to facilitate electrodeposition or removal of material from the substrate. In an embodiment of the invention the printer head includes a plurality of individually addressable electrodes (220), each electrode having a channel therethrough and wherein the electrodes are much larger than the electrolyte jet outlet. The printer head includes means for inhibiting cross talk between electrodes. For example, the printer head may include a plenum (241) and a nonconductive cross-talk inhibition layer (245) upstream of the electrodes. A resolution defining layer (270) having small apertures (271) is provided at the distal end of the printer head.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: November 10, 2009
    Assignee: University of Washington
    Inventors: Daniel T. Schwartz, John D. Whitaker
  • Patent number: 7611617
    Abstract: A method of forming a dielectric component, such as a capacitor is disclosed. In such a method, a conductive surface is applied to a dielectric to form a coated dielectric. Then a portion of the conductive surface is removed from the coated dielectric to form at least two electrically isolated conductive areas.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: November 3, 2009
    Assignee: Spectrum Control, Inc.
    Inventors: Jeffrey D. Chereson, Rob Ehrensberger, Michael Boudreaux
  • Patent number: 7611616
    Abstract: Various embodiments of the invention are directed to formation of mesoscale or microscale devices using electrochemical fabrication techniques where structures are formed from a plurality of layers as opened structures which can be folded over or other otherwise combined to form structures of desired configuration. Each layer is formed from at least one structural material and at least one sacrificial material. The initial formation of open structures may facilitate release of the sacrificial material, ability to form fewer layers to complete a structure, ability to locate additional materials into the structure, ability to perform additional processing operations on regions exposed while the structure is open, and/or the ability to form completely encapsulated and possibly hollow structures.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: November 3, 2009
    Assignee: Microfabrica Inc.
    Inventors: Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley