Patents Examined by Natalia A Gondarenko
  • Patent number: 10246325
    Abstract: A method for producing a MEMS device comprises forming a semiconductor layer stack, the semiconductor layer stack comprising at least a first monocrystalline semiconductor layer, a second monocrystalline semiconductor layer and a third monocrystalline semiconductor layer, the second monocrystalline semiconductor layer formed between the first and third monocrystalline semiconductor layers. A semiconductor material of the second monocrystalline semiconductor layer is different from semiconductor materials of the first and third monocrystalline semiconductor layers. After forming the semiconductor layer stack, at least a portion of each of the first and third monocrystalline semiconductor layers is concurrently etched.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: April 2, 2019
    Assignee: Infineon Technologies AG
    Inventors: Stefan Kolb, Andreas Meiser, Till Schloesser, Wolfgang Werner
  • Patent number: 10243046
    Abstract: A p-type metal-oxide-semiconductor (pMOS) planar fully depleted silicon-on-insulator (FDSOI) device and a method of fabricating the pMOS FDSOI are described. The method includes processing a silicon germanium (SiGe) layer disposed on an insulator layer to form gaps on a surface opposite a surface that is disposed on the insulator layer, each of the gaps extending into the SiGe layer to a depth less than or equal to a thickness of the SiGe layer, and forming a gate conductor over a region of the SiGe layer corresponding to a channel region of the pMOS. The method also includes performing an epitaxial process on the SiGe layer at locations corresponding to source and drain regions of the pMOS planar FDSOI device.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: March 26, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Shawn P. Fetterolf, Ahmet S. Ozcan
  • Patent number: 10229996
    Abstract: A method for manufacturing a semiconductor device comprises epitaxially growing a plurality of silicon layers and compressively strained silicon germanium (SiGe) layers on a substrate in a stacked configuration, wherein the silicon layers and compressively strained SiGe layers are alternately stacked on each other starting with a silicon layer on a bottom of the stacked configuration, patterning the stacked configuration to a first width, selectively removing a portion of each of the silicon layers in the stacked configuration to reduce the silicon layers to a second width less than the first width, forming an oxide layer on the compressively strained SiGe layers of the stacked configuration, wherein forming the oxide layer comprises fully oxidizing the silicon layers so that portions of the oxide layer are formed in place of each fully oxidized silicon layer, and removing part of the oxide layer while maintaining at least part of the portions of the oxide layer formed in place of each fully oxidized silicon
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: March 12, 2019
    Assignee: International Business Machines Corporation
    Inventors: Karthik Balakrishnan, Kangguo Cheng, Pouya Hashemi, Alexander Reznicek
  • Patent number: 10221062
    Abstract: An improved microelectromechanical system (MEMS) pressure sensing device has an extended shallow polygon cavity on a top side of a silicon supporting substrate. A buried silicon dioxide layer is formed between the top side of the supporting substrate and a bottom side of a device layer. Piezoresistors and bond pads are formed and located on a top side of the device layer and produce measureable voltage changes responsive to a fluid pressure applied to the device layer. The purpose of the extend shallow polygon cavity is to improve the sensitivity or increase the span while keep a low pressure nonlinearity during shrinking the die size of the MEMS pressure sensing device die with corner metal bond pads having a keep-out distance to prevent a wire bonder from breaking the thin diaphragm.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: March 5, 2019
    Assignee: Continental Automotive Systems, Inc.
    Inventors: Jen-Huang Albert Chiou, Shiuh-Hui Steven Chen
  • Patent number: 10217860
    Abstract: A device includes a semiconductor substrate, a doped isolation barrier disposed in the semiconductor substrate and defining a core device area within the doped isolation barrier, an isolation contact region disposed in the semiconductor substrate outside of the core device area and to which a voltage is applied during operation, and a depleted well region disposed in the semiconductor substrate outside of the core device area. The depleted well region electrically couples the isolation contact region and the doped isolation barrier such that the doped isolation barrier is biased at a voltage level lower than the voltage applied to the isolation contact region.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: February 26, 2019
    Assignee: NXP USA, Inc.
    Inventors: Hongning Yang, Daniel J. Blomberg, Xu Cheng, Xin Lin, Zhihong Zhang, Jiang-Kai Zuo
  • Patent number: 10217790
    Abstract: A module assembly device (402) is configured for assembling a module assembly (114) for a detector array (110) of an imaging system (100). The module assembly device includes a base (400) having a long axis (401). The module assembly device further includes a first surface (406) of the base and side walls (408) protruding perpendicular up from the first surface and extending in a direction of the long axis along at least two sides of the base. The first surface and side walls form a recess (404) configured to receive the module substrate on the surface and within the side walls. The module assembly device further includes protrusions (403) protruding from the side walls in a direction of the side walls. The protrusions and side walls interface forming a ledge which serves as a photo-detector array tile support (410) configured to receive the photo-detector array tile (118) over the ASIC and the module substrate.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: February 26, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Marc Anthony Chappo
  • Patent number: 10204927
    Abstract: The present disclosure provides a display substrate, including: a wiring mounting region. The wiring mounting region includes first wires and second wires, each of the first wires intersecting with one or more of the second wires, thereby defining one or more intersectional regions; and a semiconductor pattern between the first wire and the one or more second wires, the semiconductor pattern having at least one cross-sectional width covering at least a portion of at least one of the intersectional regions.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: February 12, 2019
    Assignees: BOE TECHNOLOGY GROUP CO., LTD, BEIJING BOE DISPLAY TECHNOLOGY CO., LTD.
    Inventors: Lin Li, Zhaohui Hao, Weidong Liu
  • Patent number: 10203411
    Abstract: Aspects of the disclosure pertain to a system and method for reducing ambient light sensitivity of Infrared (IR) detectors. Optical filter(s) (e.g., absorption filter(s), interference filter(s)) placed over a sensor of the IR detector (e.g., gesture sensor) absorb or reflect visible light, while passing specific IR wavelengths, for promoting the reduced ambient light sensitivity of the IR detector.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: February 12, 2019
    Assignee: MAXIM INTEGRATED PRODUCTS, INC.
    Inventors: Joy T. Jones, Nicole D. Kerness, Sunny K. Hsu, Anand Chamakura, Christopher F. Edwards, David Skurnik, Phillip J. Benzel, Nevzat A. Kestelli
  • Patent number: 10204791
    Abstract: A high-voltage field effect transistor (HFET) includes a first active layer, a second active layer, and a layer of electrical charge disposed proximate to the first active layer and the second active layer. A gate dielectric is disposed proximate to the second active layer. A contact region in the HFET includes a contact coupled to supply or withdraw charge from the HFET, and a passivation layer disposed proximate to the contact and the gate dielectric. An interconnect extends through the passivation layer and is coupled to the contact. An interlayer dielectric is disposed proximate to the interconnect, and a plug extends into the interlayer dielectric and is coupled to the first portion of the interconnect.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: February 12, 2019
    Assignee: Power Integrations, Inc.
    Inventors: Alexey Kudymov, LinLin Liu, Jamal Ramdani
  • Patent number: 10199611
    Abstract: An organic light-emitting display apparatus including: a substrate; a plurality of pixels that are formed on the substrate and each have a light emission area from which visible rays are emitted and a transmission area through which external light is transmitted; a pixel circuit portion disposed in each light emission area of the plurality of pixels; a first electrode that is disposed in each light emission area and is electrically connected to the pixel circuit portion; an intermediate layer that is formed on the first electrode and includes an organic emissive layer; a second electrode formed on the intermediate layer; and a capping layer that is disposed on the second electrode and includes a first capping layer corresponding to the light emission area and a second capping layer corresponding to the transmission area. Accordingly, electrical characteristics and image quality of the organic light-emitting display apparatus may be improved.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: February 5, 2019
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jun-Ho Choi, Jin-Koo Chung, Seong-Min Kim
  • Patent number: 10186528
    Abstract: Provided are a thin film transistor substrate and a display using the same. A thin film transistor substrate includes: a substrate, a first thin film transistor disposed at a first area of the substrate, the first thin film transistor including: a polycrystalline semiconductor layer, a first gate electrode on the polycrystalline semiconductor layer, a first source electrode, and a first drain electrode, a second thin film transistor disposed at a second area of the substrate, the second thin film transistor including: a second gate electrode, an oxide semiconductor layer on the second gate electrode, a second source electrode, and a second drain electrode, a nitride layer disposed on an area of the substrate, other than the second area, the nitride layer covering the first gate electrode, and an oxide layer disposed: over the first gate electrode and the second gate electrode, and under the oxide semiconductor layer.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: January 22, 2019
    Assignee: LG Display Co., Ltd.
    Inventors: Youngjang Lee, Kyungmo Son, Seongpil Cho, Jaehoon Park, Sohyung Lee, Sangsoon Noh, Moonho Park, Sungjin Lee, Seunghyo Ko, Mijin Jeong
  • Patent number: 10186612
    Abstract: A device includes a semiconductor substrate, a doped isolation barrier disposed in the semiconductor substrate and defining a core device area within the doped isolation barrier, an isolation contact region disposed in the semiconductor substrate outside of the core device area and to which a voltage is applied during operation, and a depleted well region disposed in the semiconductor substrate outside of the core device area. The depleted well region electrically couples the isolation contact region and the doped isolation barrier such that the doped isolation barrier is biased at a voltage level lower than the voltage applied to the isolation contact region.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: January 22, 2019
    Assignee: NXP USA, Inc.
    Inventors: Hongning Yang, Daniel J. Blomberg, Xu Cheng, Xin Lin, Zhihong Zhang, Jiang-Kai Zuo
  • Patent number: 10176996
    Abstract: Embodiments of the present invention provide a replacement metal gate and a fabrication process with reduced lithography steps. Using selective etching techniques, a layer of fill metal is used to protect the dielectric layer in the trenches, eliminating the need for some lithography steps. This, in turn, reduces the overall cost and complexity of fabrication. Furthermore, additional protection is provided during etching, which serves to improve product yield.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: January 8, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Min Gyu Sung, Chanro Park, Hoon Kim
  • Patent number: 10170547
    Abstract: A nanodevice capable of controlling the state of electric charge of a metal nanoparticle is provided. The device includes: nanogap electrodes 5 including one electrode 5A and the other electrode 5B disposed so as to have a nanosize gap in between; a nanoparticle 7 placed between the nanogap electrodes 5; and a plurality of gate electrodes 9. At least one of the plurality of gate electrodes 9 is used as a floating gate electrode to control the state of electric charge of the nanoparticle 7, which achieves a multivalued memory and rewritable logical operation.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: January 1, 2019
    Assignee: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Yutaka Majima, Toshiharu Teranishi, Shinya Kano, Eiki Aoyama
  • Patent number: 10164043
    Abstract: A semiconductor diode is provided. The semiconductor diode includes a monocrystalline silicon semiconductor body including a first semiconductor region of a first conductivity type extending to a first surface of the semiconductor body and having a first maximum doping concentration, and a second semiconductor region of a second conductivity type forming a pn-junction with the first semiconductor region. The semiconductor diode further includes a polycrystalline silicon semiconductor region of the first conductivity type having a second maximum doping concentration which is higher than the first maximum doping concentration and adjoining the first semiconductor region on the first surface, a first metallization arranged on the polycrystalline silicon semiconductor region and in electric contact with the polycrystalline semiconductor region, and an edge-termination structure arranged next to the first semiconductor region. Further, a method for producing a semiconductor diode is provided.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: December 25, 2018
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Philipp Seng
  • Patent number: 10153277
    Abstract: An integrated circuit device includes: a pair of width-setting patterns over a substrate, the pair of width-setting patterns defining a width of a gate structure space in a first direction and extending in a second direction intersecting with the first direction. A gate electrode layer is provided that extends in the gate structure space along the second direction. A gate insulating layer is provided in the gate structure space and between the substrate and the gate electrode layer. An insulating spacer is provides on the pair of width-setting patterns, the insulating spacer covering both sidewalls of the gate electrode layer, wherein the pair of width-setting patterns have a carbon content that is greater than a carbon content of the insulating spacer.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: December 11, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yong-suk Tak, Tae-jong Lee, Gi-gwan Park, Ji-myoung Lee
  • Patent number: 10147731
    Abstract: A semiconductor device includes a common source region formed in a semiconductor substrate, a bit line formed over the semiconductor substrate, first and second vertical channel layers coupled between the bit line and the common source region, wherein the first and second vertical channel layers are alternately arranged on the semiconductor substrate, first conductive layers stacked over the semiconductor substrate to surround one side of the first vertical channel layer, second conductive layers stacked over the semiconductor substrate to surround one side of the second vertical channel layer, and a charge storage layer formed between the first vertical channel layer and the first conductive layers and between the second vertical channel layer and the second conductive layers.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: December 4, 2018
    Assignee: SK Hynix Inc.
    Inventor: Jae Yong Cha
  • Patent number: 10134739
    Abstract: Disclosed is a structure wherein lower source/drain regions of vertical field effect transistors (VFETs) of memory cells in a memory array are aligned above and electrically connected to buried bitlines. Each cell includes a VFET with a lower source/drain region, an upper source/drain region and at least one channel region extending vertically between the source/drain regions. The lower source/drain region is above and immediately adjacent to a buried bitline, which has the same or a narrower width than the lower source/drain region and which includes a pair of bitline sections and a semiconductor region positioned laterally between the sections. The semiconductor region is made of a different semiconductor material than the lower source/drain region. Also disclosed is a method that ensures that bitlines of a desired critical dimension can be achieved and that allows for size scaling of the memory array with minimal bitline coupling.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: November 20, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Hui Zang, Jerome Ciavatti, Rinus Tek Po Lee
  • Patent number: 10128305
    Abstract: A semiconductor element is disclosed including a construction with electrode-dividing grooves, in which a dark current is smaller than in existing examples. A method of forming such grooves is also disclosed. In an embodiment, grooves, which electrically divide an electrode layer formed on the surface of a substrate, are formed with a V-shaped cross-sectional shape, groove side walls in the electrode layer, constituting the grooves, being sloping surfaces. An embodiment of the method of forming the grooves includes using a dicing blade having a blade distal end portion which is sharpened into a V-shape to cut a semiconductor wafer in which multiple patterns of semiconductor elements including an electrode layer on the surface of a substrate are formed, forming the grooves having a V-shaped cross-sectional shape which divide the electrode layer in each semiconductor element.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: November 13, 2018
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Sakari Kaneku, Yasuhiro Shuto, Akira Tachibana
  • Patent number: 10128231
    Abstract: An integrated device includes a field effect transistor formed within and upon an active region of a substrate and a resistor formed on an isolation region of the substrate. The field effect transistor includes a gate stacked structure having respective portions of a dielectric layer, a first conductive layer and a second conductive layer arranged in order from bottom to top. The resistor includes a resistor body being an enclosure portion of the first conductive layer and resistor terminals being portions of the second conductive layer on distal ends of the resistor body. A method for manufacturing a semiconductor device includes forming a gate stacked structure and a resistor stacked structure at the same time by patterning a dielectric layer, a first conductive layer and a second conductive layer. The method also includes forming a resistor having a resistor body by patterning the resistor stacked structure.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: November 13, 2018
    Assignee: Semiconductor Manufacturing International (Beijing) Corporation
    Inventor: Zhongshan Hong