Patents Examined by Natasha Patel
  • Patent number: 11638831
    Abstract: The present invention relates to treatment of a psychiatric condition, for example resistant depression (RD), bipolar disorder (either threshold or sub-threshold) and/or major depressive disorder via application of repetitive transcranial magnetic stimulation with a drug treatment, in particular application of repetitive transcranial magnetic stimulation with treatment to modulate the activity of the neurones and induce neuroplasticity and the use of Thyroid hormone treatment to increase quantity or activity of thyroid hormones, for example for treatment of thyroid dysfunction. Patients may be selected for treatment by testing for the presence of normal thyroid function.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: May 2, 2023
    Assignee: THE LONDON PSYCHIATRY CENTRE
    Inventor: Antonios Zamar
  • Patent number: 11628084
    Abstract: A monitor device and a base plate and an ostomy system comprising a monitor device and a base plate is disclosed. The base plate comprising: a top layer; an electrode assembly; and a monitor interface configured for connecting the base plate to a monitor device. An axial distance along an axial direction between a proximal facing edge of a coupling part and a contact surface on the distal side of the top layer is a first axial distance. The first axial distance being less than a second axial distance between a distal facing edge of the monitor device and a proximal facing side of the monitor device, such that upon connecting the base plate to the monitor device the proximal facing side of the monitor device contacts the contact surface to force a first connection parts to contact a first terminal element.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: April 18, 2023
    Assignee: Coloplast A/S
    Inventors: Jais Ask Hansen, Lars Erup Larsen, Niels Hvid
  • Patent number: 11602633
    Abstract: The present invention improves control of currents in a multi-site direct current neurostimulation system. Precise control incorporates three constant current sources in a system consisting of spinal, polarizing and peripheral circuits. Constant current sources (sinks) are placed on the high side of the peripheral circuit and one sink in series on the low side of the spinal circuit in a four electrode configuration, for maintaining both predetermined currents, and current ratios, as the electrode/skin impedance and body impedance vary over the course of a treatment. Resistive steering is also implemented.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: March 14, 2023
    Assignee: PATHMAKER NEUROSYSTEMS INC.
    Inventors: Gerald Jennings, Andrew Ferencz
  • Patent number: 11577068
    Abstract: A method of operating a counterpulsation device (CPD) in a human or animal subject is disclosed, the method including: receiving a heart beat signal indicative of the heart beat of the subject; providing counterpulsation therapy by controlling the pressure supplied to a CPD drive line in pneumatic communication with the CPD to cause the CPD to alternately fill with blood and eject blood with a timing that is determined at least in part based on the heart beat signal; while providing counterpulsation therapy, receiving a CPD drive line pressure signal indicative of the pressure in the CPD drive line; and adjusting the pressure supplied to the drive line based at least in part on the drive line pressure signal.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: February 14, 2023
    Assignee: ABIOMED, INC.
    Inventors: Paul Spence, Rob Dowling, Robert T. V. Kung, Thorsten Siess, Eric Gratz, Gerd Spanier
  • Patent number: 11577087
    Abstract: Embodiments presented herein are generally directed to techniques for separately transferring power and data from an external device to an implantable component of a partially or fully implantable medical device. The separated power and data transfer techniques use a single external coil and a single implantable coil. The external coil is part of an external resonant circuit, while the implantable coil is part of an implantable resonant circuit. The external coil is configured to transcutaneously transfer power and data to the implantable coil using separate (different) power and data time slots. At least one of the external or internal resonant circuit is substantially more damped during the data time slot than during the power time slot.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: February 14, 2023
    Assignee: Cochlear Limited
    Inventor: Werner Meskens
  • Patent number: 11565119
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including a fixation element that can be locked to a helix mount, is described. The fixation element includes a fastener that engages a keeper of the helix mount. When engaged with the keeper, the fastener locks the fixation element to the helix mount. Accordingly, the fixation element does not move relative to the helix mount when the biostimulator is delivered into a target tissue. Other embodiments are also described and claimed.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: January 31, 2023
    Assignee: PACESETTER, INC.
    Inventor: Craig E. Mar
  • Patent number: 11541243
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including coaxial fixation elements to engage or electrically stimulate tissue, is described. The coaxial fixation elements include an outer fixation element extending along a longitudinal axis and an inner fixation element radially inward from the outer fixation element. One or more of the fixation elements are helical fixation elements that can be screwed into tissue. The outer fixation element has a distal tip that is distal to a distal tip of the inner fixation element, and an axial stiffness of the outer fixation element is lower than an axial stiffness of the inner fixation element. The relative stiffnesses are based on one or more of material or geometric characteristics of the respective fixation elements. Other embodiments are also described and claimed.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: January 3, 2023
    Assignee: PACESETTER, INC.
    Inventors: Thomas B. Eby, Tyler J. Strang, Keith Victorine, Wesley Alleman
  • Patent number: 11541242
    Abstract: Systems and methods for managing heart failure are described. The system receives physiological information including a first HS signal corresponding to paced ventricular contractions and a second HS signal corresponding to intrinsic ventricular contractions. The system detects worsening heart failure (WHF) using the received physiological information. A signal analyzer circuit can generate a paced HS metric from the first HS signal and a sensed HS metric from the second HS signal, and determine a concordance indicator between the paced and the sensed HS metrics. In response to the detected WHF, the system can use the concordance indicator to generate a therapy adjustment indicator for adjusting electrostimulation therapy, or a worsening cardiac contractility indicator indicating the detected WHF is attributed to degrading myocardial contractility.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: January 3, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Jason Humphrey, David J. Ternes, Qi An, Krzysztof Z. Siejko, Michael James Dufresne, Yinghong Yu
  • Patent number: 11541236
    Abstract: A method comprising detecting an epileptic event in a patient; applying an electrical therapy to a first target area in at least one of a brain region or a cranial nerve of said patient in response to said detecting; receiving a body signal responsive to the electrical therapy, wherein said body signal is selected from an autonomic signal, a neurologic signal, a metabolic signal, an endocrine signal, or a tissue stress marker signal; determining whether said body signal indicates that said electrical therapy has an efficacious effect; and terminating the application of said electrical therapy if the response indicates that the electrical therapy has an efficacious effect. An apparatus capable of performing the method. A non-transitive, computer-readable storage device for storing data that when executed by a processor, perform the method.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: January 3, 2023
    Assignee: Flint Hills Scientific, LLC.
    Inventor: Ivan Osorio
  • Patent number: 11534617
    Abstract: A method and medical device for detecting a cardiac event that includes sensing cardiac signals from a plurality of electrodes forming a first sensing vector sensing a first interval of the cardiac signal during a predetermined time period and a second sensing vector simultaneously sensing a second interval of the cardiac signal during the predetermined time period, identifying each of the first interval and the second interval as being one of shockable and not shockable in response to first processing of the first interval and the second interval and in response to second processing of one or both of the first interval and the second interval, the second processing being different from the first processing, and determining whether to deliver therapy for the cardiac event in response to identifying each of the first interval and the second interval as being one of shockable and not shockable in response to both the first processing and the second processing of the first interval and the second interval.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: December 27, 2022
    Assignee: MEDTRONIC, INC.
    Inventor: Xusheng Zhang
  • Patent number: 11517262
    Abstract: Disclosed is a monitor equipment. The monitor equipment comprising a nasal clip configured to clip onto nasal septum of a patient. Further, the monitor equipment comprising a monitor detector connected to the nasal clip through at least one of a wired and a wireless connection.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: December 6, 2022
    Inventor: Kongyuan He
  • Patent number: 11517742
    Abstract: Devices, systems and methods are disclosed for treating a variety of diseases and disorders that are primarily or at least partially driven by an imbalance in neurotransmitters in the brain, such as asthma, COPD, depression, anxiety, epilepsy, fibromyalgia, and the like. The invention involves the use of an energy source comprising magnetic and/or electrical energy that is transmitted non-invasively to, or in close proximity to, a selected nerve to temporarily stimulate, block and/or modulate the signals in the selected nerve such that neural pathways are activated to release inhibitory neurotransmitters in the patient's brain.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: December 6, 2022
    Assignee: ELECTROCORE, INC
    Inventors: Bruce J. Simon, Joseph P. Errico, John T. Raffle
  • Patent number: 11511105
    Abstract: The present invention relates to systems for providing noninvasive cranial nerve stimulation and methods for using the same. The present invention administers therapy through electrodes that are noninvasively attached to one or more of a subject's cranial nerve. The systems can be used to enhancing rehabilitation and recovery by improving neuroplasticity and coupling muscle training with feedback.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: November 29, 2022
    Assignee: MUSC Foundation for Research Development
    Inventors: Bashar Badran, Mark George, Doe Jenkins, Daniel Cook
  • Patent number: 11491331
    Abstract: A BTE prosthetic device for use in a medical system or prosthesis comprises a connector configured to mechanically attach an auxiliary device of the system to the BTE prosthetic device. The connector is electrically connected to a transceiver of the BTE prosthetic device. The connector operates as an electromagnetic antenna for transmitting and/or receiving signals between the BTE prosthetic and other components of the medical system.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: November 8, 2022
    Assignee: Cochlear Limited
    Inventors: Werner Meskens, Tadeusz Jurkiewicz, Steve Winnal, Limin Zhong
  • Patent number: 11484713
    Abstract: Disclosed herein are an electrode assembly, an in-ear headphone, an in-ear headphone pair, and an electrode pair assembly, each for non-invasive vagus nerve stimulation. Each of the foregoing items includes a first electrode and a second electrode. An electrode assembly configured for insertion into an ear of a user includes a first electrode, a second electrode, and a shim positioned therebetween. An in-ear headphone or headphone pair may include the electrode assembly with a housing and a waveform generator. An electrode pair assembly may include a first electrode configured for insertion into a first ear of a user, and a second electrode configured for insertion into a second ear of the user. Certain embodiments further include audio components positioned within a housing of at least one in-ear headphone to deliver audio stimulation through a central channel of a first electrode or second electrode, respectively.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: November 1, 2022
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Nick Hool, William J Tyler
  • Patent number: 11478649
    Abstract: Systems and methods involve an intrathoracic cardiac stimulation device operable to provide autonomous cardiac sensing and energy delivery. The cardiac stimulation device includes a housing configured for intrathoracic placement relative to a patient's heart. A fixation arrangement of the housing is configured to affix the housing at an implant location within cardiac tissue or cardiac vasculature. An electrode arrangement supported by the housing is configured to sense cardiac activity and deliver stimulation energy to the cardiac tissue or cardiac vasculature. Energy delivery circuitry in the housing is coupled to the electrode arrangement. Detection circuitry is provided in the housing and coupled to the electrode arrangement. Communications circuitry may optionally be supported by the housing. A controller in the housing coordinates delivery of energy to the cardiac tissue or cardiac vasculature in accordance with an energy delivery protocol appropriate for the implant location.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: October 25, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Jeffrey P. Bodner, Randy Bierwerth
  • Patent number: 11471665
    Abstract: An improved system for supporting (e.g., localization and/or positioning of) intravascular devices discussed herein provides for example a multi-element arrangement. A set of struts optionally projects from the intravascular device and contacts the vessel walls. The localization and positioning of the pump may be provided by the struts and/or by use of a tether opposing a propulsive force to ensure localization.
    Type: Grant
    Filed: November 24, 2021
    Date of Patent: October 18, 2022
    Assignee: PROCYRION, INC.
    Inventors: William Clifton, Ronald G. Earles, Benjamin Hertzog, Jason J. Heuring, Christopher A. Durst, Omar Benavides, Eric S. Fain
  • Patent number: 11464966
    Abstract: An implant that includes an electrode is advanced to a nerve of a subject using a tube. The tube and the implant are arranged at a nonzero angle with respect to a skin surface of the subject, and the implant is passed distally from an opening of the tube, in a vicinity of a portion of the nerve. A longitudinal axis of the implant is realigned to become generally parallel with the skin surface, by proximally withdrawing the tube from the subject. Other embodiments are also described.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: October 11, 2022
    Assignee: BLUEWIND MEDICAL LTD.
    Inventors: Yossi Gross, Gur Oron, Bar Eytan, Zev Sohn
  • Patent number: 11445982
    Abstract: A system and method of determining blood pressure includes measuring heart sounds, separating the measured heart sounds into a first heart sound (S1) and a second heart sound (S2), mathematically characterizing S1 and S2, and determining a blood pressure based on the characterization.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: September 20, 2022
    Assignee: Wayne State University
    Inventors: William D. Lyman, Gaurav Kapur, Yong Xu, Sean F. Wu, Lingguang Chen
  • Patent number: 11433237
    Abstract: The present disclosure relates to a method for modulating the nervous system in order to reduce inflammation. The method includes delivering a vagus nerve stimulation (VNS) therapy to a vagus nerve of a patient for the treatment of inflammation according to a first set of parameters. The method further includes delivering a secondary nerve stimulation (SNS) therapy to a secondary nerve of the patient for the treatment of a sleep disorder according to a second set of parameters different from the first set of parameters.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: September 6, 2022
    Assignee: LivaNova USA, Inc.
    Inventor: Eric Lovett