Patents Examined by Nilufa Rahim
  • Patent number: 11552196
    Abstract: A metal oxide semiconductor field effect transistor preferably fabricated with a silicon-on-insulator process has a first semiconductor region and a second semiconductor region in a spaced relationship thereto A body structure is defined by a channel segment between the first semiconductor region and the second semiconductor region, and a first extension segment structurally contiguous with the channel segment. A shallow trench isolation structure surrounds the first semiconductor region, the second semiconductor region, and the body structure, with a first extension interface being defined between the shallow trench isolation structure and the first extension segment of the body structure to reduce leakage current flowing from the second semiconductor region to the first semiconductor region through a parasitic path of the body structure.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: January 10, 2023
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Oleksandr Gorbachov, Lisette L. Zhang, Lothar Musiol
  • Patent number: 11545499
    Abstract: Provided is a read-only memory (ROM) device. The ROM device comprises a substrate that has a plurality of vertical transport field effect transistors (VFETs). The ROM device further comprises an un-activated semiconductor layer provided on each VFET. The un-activated semiconductor layer includes implanted dopants that have not been substantially activated.
    Type: Grant
    Filed: October 6, 2020
    Date of Patent: January 3, 2023
    Assignee: International Business Machines Corporation
    Inventor: Tenko Yamashita
  • Patent number: 11545368
    Abstract: A method of processing and passivating an implanted workpiece is disclosed, wherein, after passivation, the fugitive emissions of the workpiece are reduced to acceptably low levels. This may be especially beneficial when phosphorus, arsine, germane or another toxic species is the dopant being implanted into the workpiece. In one embodiment, a sputtering process is performed after the implantation process. This sputtering process is used to sputter the dopant at the surface of the workpiece, effectively lowering the dopant concentration at the top surface of the workpiece. In another embodiment, a chemical etching process is performed to lower the dopant concentration at the top surface. After this sputtering or chemical etching process, a traditional passivation process can be performed.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: January 3, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Cuiyang Wang, Timothy J. Miller, Jun Seok Lee, Il-Woong Koo, Deven Raj Mittal, Peter G. Ryan, Jr.
  • Patent number: 11545622
    Abstract: An array, such as an MRAM (Magnetic Random Access Memory) array formed of a multiplicity of layered thin film devices, such as MTJ (Magnetic Tunnel Junction) devices, can be simultaneously formed in a multiplicity of horizontal widths in the 60 nm range while all having top electrodes with substantially equal thicknesses and coplanar upper surfaces. This allows such a multiplicity of devices to be electrically connected by a common conductor without the possibility of electrical opens and with a resulting high yield.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: January 3, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi Yang, Zhongjian Teng, Yu-Jen Wang
  • Patent number: 11539015
    Abstract: An electroluminescent device comprising a first electrode and a second electrode facing each other, an emission layer disposed between the first electrode and the second electrode and including at least two light emitting particles, a hole transport layer disposed between the first electrode and the emission layer, and an electron transport layer disposed between the emission layer and the second electrode, wherein the electron transport layer comprises an inorganic layer disposed on the emission layer, the inorganic layer comprising a plurality of inorganic nanoparticles; and an organic layer directly disposed on at least a portion of the inorganic layer on a side opposite the emission layer, wherein a work function of the organic layer is greater than a work function of the inorganic layer.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: December 27, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Tae Ho Kim, Sung Woo Kim, Eun Joo Jang, Dae Young Chung
  • Patent number: 11538835
    Abstract: The disclosure discloses an array substrate, a method for manufacturing the same, a display panel and a display device. The array substrate includes a base substrate; a plurality of data lines and a plurality of dummy leads, wherein the plurality of data lines and the plurality of dummy leads are in the same layer on the base substrate, and the plurality of data lines and the plurality of dummy leads extend along the first direction; and at least one dummy lead includes a plurality of wires which extend in the first direction and are disconnected with one another.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: December 27, 2022
    Assignees: Beijing BOE Optoelectronics Technology Co., Ltd., BOE Technology Group Co., Ltd.
    Inventors: Dawei Zhang, Jianxing Shang, Shuai Yan, Song Ruan, Sen Li
  • Patent number: 11528442
    Abstract: A photodetector device is provided that includes a ROIC having a top surface with a plurality of electrically conductive first electrodes within a pattern of surface areas on the top surface each surface area having a border, and an electrically conductive electrode grid having a portion on the border of each of the surface areas; and a photodetector film overlying the surface area. The electrode grid can be configured to surround each surface area to define the borders of the surface areas as pixels. The photodetector film can be a colloidal quantum dot film. The ROIC has circuit elements signal-connected to the plurality of first electrodes. Methods for forming the photodetector device include photolithography and deposition methods.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: December 13, 2022
    Assignee: Sivananthan Laboratories, Inc.
    Inventors: Richard Edward Pimpinella, Anthony Joseph Ciani, Christoph H. Grein
  • Patent number: 11521891
    Abstract: A semiconductor device includes: a metal-oxide semiconductor (MOS) transistor on a substrate; a deep trench isolation structure in the substrate and around the MOS transistor; and a trap rich isolation structure in the substrate and surrounding the deep trench isolation structure. Preferably, the deep trench isolation structure includes a liner in the substrate and an insulating layer on the liner, in which the top surfaces of the liner and the insulating layer are coplanar. The trap rich isolation structure is made of undoped polysilicon and the trap rich isolation structure includes a ring surrounding the deep trench isolation structure according to a top view.
    Type: Grant
    Filed: June 6, 2021
    Date of Patent: December 6, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Purakh Raj Verma, Chia-Huei Lin, Kuo-Yuh Yang
  • Patent number: 11495631
    Abstract: A system includes a pixel including a diffusion layer in contact with an absorption layer. The diffusion layer and absorption layer are in contact with one another along an interface that is inside of a mesa. A trench is defined in the absorption layer surrounding the mesa. An overflow contact is seated in the trench.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: November 8, 2022
    Assignee: Sensors Unlimited, Inc.
    Inventors: Wei Huang, Douglas Stewart Malchow, Michael J. Evans, John Liobe, Wei Zhang
  • Patent number: 11489135
    Abstract: Disclosed is an electroluminescence display having a structure in which the current leakage between neighboring pixels is prevented. The electroluminescence display comprises a first pixel defined for representing a first color on a substrate, a second pixel defined for representing a second color on the substrate, a first anode electrode disposed at the first pixel, a second anode electrode disposed at the second pixel, and a depletion electrode forming a depletion area between the first anode electrode and the second anode electrode.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: November 1, 2022
    Assignee: LG Display Co., Ltd.
    Inventors: JuhnSuk Yoo, HoYoung Lee, Neunghee Lee, Kyuri Kim
  • Patent number: 11482494
    Abstract: A semiconductor device including: a silicon layer including a single crystal silicon layer and a plurality of first transistors; a first metal layer disposed over the first silicon layer; a second metal layer disposed over the first metal layer; a third metal layer disposed over the second metal layer; a second level including a plurality of second transistors, the second level disposed over the third metal layer; a fourth metal layer disposed over the second level; a fifth metal layer disposed over the fourth metal layer; and a via disposed through the second level and has a diameter of less than 450 nm, where the second level thickness is less than four microns, where the fifth metal layer includes a global power distribution grid, and where a typical thickness of the fifth metal layer is greater than a typical thickness of the second metal layer by at least 50%.
    Type: Grant
    Filed: June 18, 2022
    Date of Patent: October 25, 2022
    Assignee: MONOLITHIC 3D INC.
    Inventors: Zvi Or-Bach, Brian Cronquist
  • Patent number: 11476192
    Abstract: A semiconductor device includes: a first gate line and a second gate line extending only along a first direction, a third gate line and a fourth gate line extending along the first direction and between the first gate line and the second gate line, a fifth gate line and a sixth gate line extending along a second direction between the first gate line and the second gate line and intersecting the third gate line and the fourth gate line, and first contact plugs on the first gate line. Preferably, the first direction is perpendicular to the second direction and the first gate line and the second gate line are directly connected to the fifth gate line and the sixth gate line.
    Type: Grant
    Filed: January 5, 2020
    Date of Patent: October 18, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Purakh Raj Verma, Chia-Huei Lin, Kuo-Yuh Yang
  • Patent number: 11476208
    Abstract: Semiconductor devices may include a substrate and a backside-biased semiconductor die supported above the substrate. A backside surface of the backside-biased semiconductor die may be spaced from the substrate. The backside surface may be electrically connected to ground by wire bonds extending to the substrate. Methods of making semiconductor devices may involve supporting a backside-biased semiconductor die supported above a substrate, a backside surface of the backside-biased semiconductor die being spaced from the substrate. The backside surface may be electrically connected to ground by wire bonds extending to the substrate. Systems may include a sensor device, a nontransitory memory device, and at least one semiconductor device operatively connected thereto. The at least one semiconductor device may include a substrate and a backside-biased semiconductor die supported above the substrate.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: October 18, 2022
    Assignee: Microchip Technology Incorporated
    Inventors: Behrooz Mehr, Fernando Chen, Emmanuel de los Santos, Alex Kungo
  • Patent number: 11476289
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to photodetectors with buried airgap mirror reflectors. The structure includes a photodetector and at least one airgap in a substrate under the photodetector.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: October 18, 2022
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Siva P. Adusumilli, Vibhor Jain, Alvin J. Joseph, Steven M. Shank
  • Patent number: 11462579
    Abstract: A method for forming a transfer gate includes (i) forming a dielectric pillar on a surface of a semiconductor substrate and (ii) growing an epitaxial layer on the semiconductor substrate and surrounding the dielectric pillar. The dielectric pillar has a pillar height that exceeds an epitaxial-layer height of the epitaxial layer relative to the surface. The method also includes removing the dielectric pillar to yield a trench in the epitaxial layer. A pixel includes a doped semiconductor substrate having a front surface opposite a back surface. The front surface forms a trench extending a depth zT with respect to the front surface within the doped semiconductor substrate along a direction z perpendicular to the front surface and the back surface. The pixel has a dopant concentration profile, a derivative thereof with respect to direction z being discontinuous at depth zT.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: October 4, 2022
    Assignee: OmniVision Technologies, Inc.
    Inventors: Hui Zang, Gang Chen
  • Patent number: 11450588
    Abstract: A method for forming a chip package structure is provided. The method includes disposing a chip over a substrate. The method includes forming a heat-spreading wall structure over the substrate. The heat-spreading wall structure is adjacent to the chip, and there is a first gap between the chip and the heat-spreading wall structure. The method includes forming a first heat conductive layer in the first gap. The method includes forming a second heat conductive layer over the chip. The method includes disposing a heat-spreading lid over the substrate to cover the heat-spreading wall structure, the first heat conductive layer, the second heat conductive layer, and the chip. The heat-spreading lid is bonded to the substrate, the heat-spreading wall structure, the first heat conductive layer, and the second heat conductive layer.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: September 20, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shin Chi, Chien-Hao Hsu, Kuo-Chin Chang, Cheng-Nan Lin, Mirng-Ji Lii
  • Patent number: 11444090
    Abstract: An embodiment of a method of forming a programming element using a III/V semiconductor material may include forming one or more recesses in a first portion of a gate material and forming a first conductor on the one or more recesses. In an embodiment, the method may include configuring a programming circuit to form a voltage across the one or more recesses that is greater than a breakdown voltage of the gate material underlying the one or more recesses.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: September 13, 2022
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Jaume Roig-Guitart, Aurore Constant
  • Patent number: 11437336
    Abstract: A semiconductor package structure includes a first redistribution layer, a plurality of conductive connectors, a chip, and an encapsulant. The first redistribution layer has a first surface and a second surface opposite to the first surface. The first redistribution layer includes at least one conductive pattern and at least one dielectric layer stacked on each other. The conductive pattern includes a plurality of landing pads, and each of the landing pads is separated from the dielectric layer. The conductive connectors are located on the first surface. Each of the conductive connectors is corresponding to and electrically connected to one of the landing pads. The chip is located on the first surface. The chip is electrically connected to the first redistribution layer. The encapsulant encapsulates the chip and the conductive connectors. A manufacturing method of a semiconductor package structure is also provided.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: September 6, 2022
    Assignee: Powertech Technology Inc.
    Inventors: Jeffrey Wang, Jen-I Huang, Kun-Yung Huang
  • Patent number: 11437278
    Abstract: A method of forming a semiconductor device includes forming a gate structure over first and second fins over a substrate; forming an interlayer dielectric layer surrounding first and second fins; etching a first trench in the interlayer dielectric layer between the first and second fins uncovered by the gate structure; forming a helmet layer lining the first trench; and forming a dielectric feature in the first trench.
    Type: Grant
    Filed: August 4, 2020
    Date of Patent: September 6, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chang-Yun Chang, Bone-Fong Wu, Ming-Chang Wen, Ya-Hsiu Lin
  • Patent number: 11430894
    Abstract: Provided is a semiconductor device in which deterioration of electric characteristics which becomes more noticeable as the semiconductor device is miniaturized can be suppressed. The semiconductor device includes a first oxide film, an oxide semiconductor film over the first oxide film, a source electrode and a drain electrode in contact with the oxide semiconductor film, a second oxide film over the oxide semiconductor film, the source electrode, and the drain electrode, a gate insulating film over the second oxide film, and a gate electrode in contact with the gate insulating film. A top end portion of the oxide semiconductor film is curved when seen in a channel width direction.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: August 30, 2022
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kazuya Hanaoka, Daisuke Matsubayashi, Yoshiyuki Kobayashi, Shunpei Yamazaki, Shinpei Matsuda