Patents Examined by Parviz Hassanzadeh
  • Patent number: 10822698
    Abstract: A substrate processing apparatus includes a robot arm for conveying a substrate, a conveyance chamber containing the robot arm, and an adjacent processing unit adjacent to the conveyance chamber, the adjacent processing unit processing a substrate therein. The conveyance chamber is constructed so as to be able to have a first shape for providing a predetermined space between the conveyance chamber and the adjacent processing unit, and a second shape for increasing the internal space of the conveyance chamber by making the distance between the conveyance chamber and the adjacent processing unit smaller than when the first shape is formed.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: November 3, 2020
    Assignee: ASM IP Holding B.V.
    Inventor: Teruhide Nishino
  • Patent number: 10804081
    Abstract: An edge ring configured to surround an outer periphery of a substrate support in a plasma processing chamber wherein plasma is generated and used to process a substrate is disclosed, the substrate support comprising a base plate, a top plate, an elastomer seal assembly between the base plate and the top plate, and an elastomer seal configured to surround the elastomer seal assembly. The edge ring includes an upper inner surface having an edge step directed towards an interior portion of the edge ring and arranged to extend from an outer periphery of a top surface of the top plate to an outer periphery of an upper surface of the base plate, a lower inner surface, an outer surface, a lower surface extending from the lower inner surface to the outer surface, and a top surface extending from the outer surface to the upper inner surface.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: October 13, 2020
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Ambarish Chhatre, David Schaefer, Keith Gaff
  • Patent number: 10774423
    Abstract: An apparatus and method are provided for controlling the intensity and distribution of a plasma discharge in a plasma chamber. In one embodiment, a shaped electrode is embedded in a substrate support to provide an electric field with radial and axial components inside the chamber. In another embodiment, the face plate electrode of the showerhead assembly is divided into zones by isolators, enabling different voltages to be applied to the different zones. Additionally, one or more electrodes may be embedded in the chamber side walls.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: September 15, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Karthik Janakiraman, Thomas Nowak, Juan Carlos Rocha-Alvarez, Mark A. Fodor, Dale R. Du Bois, Amit Bansal, Mohamad Ayoub, Eller Y. Juco, Visweswaren Sivaramakrishnan, Hichem M'Saad
  • Patent number: 10767261
    Abstract: The invention relates to a device for vacuum coating substrates in a vacuum chamber, comprising an elongated evaporator array having a plurality of evaporator elements arranged along a longitudinal axis and a first substrate carrier unit which is associated with the evaporator array and has a first pylon that can be rotated about a first axis and contains retaining means for substrates, wherein an angular offset of less than 10° is present between the longitudinal axis and the first rotational axis. The device is characterised in that at least one second substrate carrier unit is provided, which is associated with the evaporator array and has a second pylon that can be rotated about a second axis and contains retaining means for substrates, wherein an angular offset of less than 10° is present between the longitudinal axis and the second rotational axis.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: September 8, 2020
    Assignee: Leybold Optics GmbH
    Inventors: Torsten Schmauder, Gunter Kern
  • Patent number: 10741367
    Abstract: A method of processing a substrate is provided. The method includes loading a substrate in a processing chamber. The substrate is supported on a bottom electrode and the processing chamber includes a top electrode opposing the bottom electrode. The method includes placing a plasma containment structure over a selected portion of the surface of the substrate to define a plasma containment region of the selected portion of the surface of the substrate. Then, injecting at least one process gas into the plasma containment region and biasing the top electrode and the bottom electrode. The method further includes exhausting process byproducts from the plasma containment region and moving the plasma containment region relative to the substrate to selectively passes over the entire surface of the substrate.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: August 11, 2020
    Assignee: Lam Research Corporation
    Inventor: Eric Hudson
  • Patent number: 10707106
    Abstract: A wafer-processing apparatus includes: multiple discrete units of reactors disposed on the same plane; a wafer-handling chamber having a polygonal shape having multiple sides corresponding to and being attached to the multiple discrete units, respectively, and one additional side for a load lock chamber; a load lock chamber attached to the one additional side of the wafer-handling chamber; multiple discrete gas boxes for controlling gases corresponding to and being connected to the multiple discrete units, respectively; and multiple discrete electric boxes for controlling electric systems corresponding to and being detachably connected to the multiple discrete units, respectively, wherein the gas boxes and the electric boxes are arranged alternately as viewed from above under the multiple discrete units, and the electric boxes can be pulled out outwardly without being disconnected from the corresponding units so that sides of the gas boxes are accessible.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: July 7, 2020
    Assignee: ASM IP Holding B.V.
    Inventors: Yukihiro Mori, Takayuki Yamagishi
  • Patent number: 10685814
    Abstract: A system for processing substrates having an atmospheric front end and a vacuum main frame, primary processing chambers attached to the main frame, a loadlock positioned between the front end and the main frame, and at least one secondary processing chamber attached to the loadlock.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: June 16, 2020
    Assignee: ADVANCED MICRO-FABRICATION EQUIPMENT INC. CHINA
    Inventors: Heng Tao, Tuqiang Ni, Qian Wang
  • Patent number: 10683573
    Abstract: A film forming apparatus of forming a film by supplying a process gas onto a substrate includes a rotation table having a loading region and is configured to revolve the substrate loaded on the loading region; a process gas supply mechanism configured to supply the process gas to a gas supply region to perform film formation on the substrate repeatedly passing through the gas supply region a plurality of times by revolution of the substrate; a first gear disposed on the other surface side of the rotation table and rotated in a rotation direction of the rotation table; a second gear configured with planetary gears engaging with the first gear, disposed to be revolved together with the loading region, and configured to rotate the loading region so as to allow the substrate to be rotated.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: June 16, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Hitoshi Kato, Shigehiro Miura, Hiroyuki Kikuchi, Katsuyoshi Aikawa
  • Patent number: 10669630
    Abstract: A layer-forming device includes a feeding mechanism that feeds a substrate during layer formation, an injector unit having a plurality of injectors that supplies a layer-forming gas to the substrate, along a feeding passage of the substrate, and a reactant supply unit which generates a reactant. The injector unit supplies the reactant through gaps between the injectors to a layer of the layer-forming component. A substrate opposing surface of the injector includes a layer-forming gas supply slot through which the layer-forming gas is output, first gas exhaust slots that suck an excess gas such as the layer-forming gas, the first gas exhaust slots being provided on both sides of the layer-forming gas supply slot in a feeding direction of the substrate, and inert gas supply slots that supply an inert gas provided on far sides of the respective first gas exhaust slots away from the layer-forming gas supply slot.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: June 2, 2020
    Assignee: MITSUI E&S MACHINERY CO., LTD.
    Inventors: Nozomu Hattori, Naomasa Miyatake, Yasunari Mori
  • Patent number: 10669633
    Abstract: Embodiments of the invention involve a technique and process for coating fine diameter, single strand wire of long continuous lengths with Parylene. The special fixture design and process allows for ultra thin (as thin as 0.2 micron), pore free, coatings. The advantages of this technology allow for wire products that offer minimal intrusion, superior routing and winding characteristics, and high heat and chemical resistance. The coating process can also be used for other types of material.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: June 2, 2020
    Assignee: AEROQUEST RESEARCH GROUP LLC
    Inventors: Thomas Lawrence, Nick Stahl, Jay Ahling
  • Patent number: 10607820
    Abstract: A monitoring unit for monitoring a plasma process chamber includes a piezoelectric member comprising a surface that is exposed within the plasma process chamber, a first electrode coupled to the piezoelectric member, a power supply unit coupled to the first electrode and configured to apply a voltage to the piezoelectric member through the first electrode, and a control unit coupled to the piezoelectric member and configured to detect a vibration frequency of the piezoelectric member. The vibration frequency is generated in response to the voltage applied to the piezoelectric member.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: March 31, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Junho Yoon, Jaehyun Lee
  • Patent number: 10597782
    Abstract: A device for coating one or more yarns by a vapor deposition method, the device including a treatment chamber defining a first and a second treatment zone in which at least one yarn is to be coated by performing a vapor deposition method, the first and second zones being separated by a wall and the first zone surrounding the second zone, or being superposed on the second zone; a conveyor system to transport the at least one yarn through the first and second zones; a first injector device to inject a first treatment gas phase into the first zone and a first removal device configured to remove the residual first gas phase from the first zone; and a second injector device configured to inject a second treatment gas phase into the second zone, and a second removal device configured to remove the residual second gas phase from the second zone.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: March 24, 2020
    Assignee: SAFRAN CERAMICS
    Inventors: Emilien Buet, Simon Thibaud, Adrien Delcamp, Cédric Descamps
  • Patent number: 10580624
    Abstract: The present invention provides novel plasma sources useful in the thin film coating arts and methods of using the same. More specifically, the present invention provides novel linear and two dimensional plasma sources that produce linear and two dimensional plasmas, respectively, that are useful for plasma-enhanced chemical vapor deposition. The present invention also provides methods of making thin film coatings and methods of increasing the coating efficiencies of such methods.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: March 3, 2020
    Assignees: AGC FLAT GLASS NORTH AMERICA, INC., ASAHI GLASS CO., LTD., AGC GLASS EUROPE
    Inventor: Peter Maschwitz
  • Patent number: 10497557
    Abstract: The present disclosure relates to a method and apparatus for performing a dry plasma procedure, while mitigating internal contamination of a semiconductor substrate. In some embodiments, the apparatus includes a semiconductor processing tool having a dry process stage with one or more dry process elements that perform a dry plasma procedure on a semiconductor substrate received from an input port. A wafer transport system transports the semiconductor substrates from the dry process stage to a wet cleaning stage located downstream of the dry process stage. The wet cleaning stage has one or more wet cleaning elements that perform a wet cleaning procedure to remove contaminants from a surface of the semiconductor substrates before the semiconductor substrate is provided to an output port, thereby improving wafer manufacturing quality.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: December 3, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shao-Yen Ku, Tsai-Pao Su, Wen-Chang Tsai, Chia-Wen Li, Yu-Yen Hsu
  • Patent number: 10483093
    Abstract: The present invention provides novel plasma sources useful in the thin film coating arts and methods of using the same. More specifically, the present invention provides novel linear and two dimensional plasma sources that produce linear and two dimensional plasmas, respectively, that are useful for plasma-enhanced chemical vapor deposition. The present invention also provides methods of making thin film coatings and methods of increasing the coating efficiencies of such methods.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: November 19, 2019
    Assignees: AGC FLAT GLASS NORTH AMERICA, INC., ASAHI GLASS CO., LTD., AGC GLASS EUROPE
    Inventor: Peter Maschwitz
  • Patent number: 10458010
    Abstract: Disclosed is a substrate liquid processing apparatus including: a processing bath in which a mixture of sulfuric acid and hydrogen peroxide is stored, and a substrate is immersed in the stored mixture such that a processing is performed on the substrate; an outer bath configured to receive the mixture flowing out from the processing bath; a circulation line configured to return the mixture in the outer bath to the processing bath; a sulfuric acid supply unit configured to supply sulfuric acid to the mixture; a first hydrogen peroxide supply unit configured to supply hydrogen peroxide to the mixture in the outer bath; and a second hydrogen peroxide supply unit configured to supply hydrogen peroxide to the mixture flowing through a downstream portion of the circulation line.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: October 29, 2019
    Assignee: Tokyo Electron Limited
    Inventors: Hironobu Hyakutake, Takafumi Tsuchiya, Koichiro Kanzaki
  • Patent number: 10438777
    Abstract: The present invention provides novel plasma sources useful in the thin film coating arts and methods of using the same. More specifically, the present invention provides novel linear and two dimensional plasma sources that produce linear and two dimensional plasmas, respectively, that are useful for plasma-enhanced chemical vapor deposition. The present invention also provides methods of making thin film coatings and methods of increasing the coating efficiencies of such methods.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: October 8, 2019
    Assignees: AGC FLAT GLASS NORTH AMERICA, INC., ASAHI GLASS CO., LTD., AGC GLASS EUROPE
    Inventor: Peter Maschwitz
  • Patent number: 10392696
    Abstract: An installation for chemical vapor infiltration of porous preforms of three-dimensional shape extending mainly in a longitudinal direction, the installation comprising a reaction chamber of parallelepiped shape, the side walls of the reaction chamber including heater means and a plurality of stacks of loader devices arranged in the reaction chamber. Each loader device being in the form of an enclosure of parallelepiped shape provided with support elements for receiving porous preforms for infiltrating.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: August 27, 2019
    Assignee: SAFRAN CERAMICS
    Inventors: Sebastien Bertrand, Franck Lamouroux, Stephane Goujard, Cedric Descamps
  • Patent number: 10395957
    Abstract: A substrate processing unit 14 includes processing modules 2 each performing a process on a substrate, and a substrate transfer device 121 is provided between a mounting unit 11 and the processing modules. A parameter storage unit 3 stores sets of transfer parameter 33 where an operating speed of the substrate transfer device corresponds to a processing number of substrates per a unit time. A parameter selecting unit 4 compares a processing number of substrates per a unit time determined based on a recipe 31 corresponding to the process, with those corresponding to the transfer parameters and selects a transfer parameter corresponding to the minimum processing number of substrates among the processing numbers of substrates equal to or larger than that determined based on the recipe. A transfer control units 151 to 153 control the substrate transfer device based on a set value of the selected transfer parameter.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: August 27, 2019
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Tomohiro Kaneko
  • Patent number: 10395893
    Abstract: A plasma source assembly for use with a processing chamber includes an inner RF feed connected to the inner edge of the electrode and an outer RF feed connected to the outer edge of the electrode. A capacitor is connected between the inner edge of the electrode and electrical ground to modulate the voltage of across the length of the electrode.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: August 27, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Edward P. Hammond, IV, Tsutomu Tanaka, Anantha K. Subramani