Patents Examined by Paul E Patton
  • Patent number: 7834385
    Abstract: A multi-bit spin torque magnetic element that has a ferromagnetic pinned layer having a pinned magnetization orientation, a non-magnetic layer, and a ferromagnetic free layer having a magnetization orientation switchable among at least four directions, the at least four directions being defined by a physical shape of the free layer. The magnetic element has at least four distinct resistance states. Magnetic elements with at least eight magnetization directions are also provided.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: November 16, 2010
    Assignee: Seagate Technology LLC
    Inventors: Dimitar V. Dimitrov, Zheng Gao, Xiaobin Wang
  • Patent number: 7829408
    Abstract: The present invention discloses a laterally double-diffused metal oxide semiconductor transistor (LDMOS) and a method for fabricating the same. The LDMOS includes a substrate, a first well, a drain, a second well and a source. The substrate includes a first conductive dopant. The first well includes a second conductive dopant and formed in a part of the substrate, and the drain is located in the first well. The second well includes the first conductive dopant and formed in another part of the substrate, and the source located in the second well. The source includes a lightly doped region and a heavily doped region extending downwardly from a top surface of the substrate. The depth of the lightly doped region is more than the depth of the heavily doped region.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: November 9, 2010
    Assignee: Macronix International Co., Ltd.
    Inventors: Cheng-Chi Lin, Shin Su, Chien-Wen Chu, Shih-Chin Lien, Chin-Pen Yeh
  • Patent number: 7829923
    Abstract: In a particular embodiment, a method of forming a magnetic tunnel junction (MTJ) device includes applying a dielectric layer to a surface, applying a metal layer to the dielectric layer, and adding a cap layer on the dielectric layer. The method also includes forming a magnetic tunnel junction (MTJ) stack such that an electrode of the MTJ stack is disposed on the metal layer and the cap layer contacts a side portion of the metal layer. An adjustable depth to via may connect a top electrode of the MTJ stack to a top metal.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: November 9, 2010
    Assignee: QUALCOMM Incorporated
    Inventors: Xia Li, Seung H. Kang, Xiaochun Zhu, Kangho Lee, Matthew Nowak
  • Patent number: 7829903
    Abstract: A light emitting apparatus includes a semiconductor light emitting element mounted on a circuit board; a lighting circuit part mounted on the circuit board; and a cover which covers the semiconductor light emitting element and the lighting circuit part. The lighting circuit part converts a voltage inputted from a power source into electromagnetic energy and propagates the converted electromagnetic energy to the semiconductor light emitting element as light emitting energy, and the cover transmits light from the semiconductor light emitting element.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: November 9, 2010
    Assignee: Koito Manufacturing Co., Ltd.
    Inventors: Hitoshi Takeda, Masayasu Ito, Tsukasa Tokida
  • Patent number: 7820492
    Abstract: An electrical fuse (eFuse) has a gate prepared from a conductive or partially conductive material such as polysilicon, a semiconductor substrate having a pipe region in proximity to the gate, and first and second electrode regions adjacent the pipe region. A metal silicide layer is provided on the semiconductor substrate adjacent the pipe region. When a programming voltage is applied, the metal silicide undergoes a thermally induced phase transition in the pipe region. The eFuse has improved reliability and can be programmed with relatively low voltages.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: October 26, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsura Miyashita, Yoshiaki Toyoshima
  • Patent number: 7820503
    Abstract: An object of the present invention is to simplify manufacturing process of an n channel MIS transistor and a p channel MIS transistor with gate electrodes formed of a metal material. For its achievement, gate electrodes of each of the n channel MIS transistor and the p channel MIS transistor are simultaneously formed by patterning ruthenium film deposited on a gate insulator. Next, by introducing oxygen into each of the gate electrodes, the gate electrodes are transformed into those having high work function. Thereafter, by selectively reducing the gate electrode of the n channel MIS transistor, it is transformed into a gate electrode having low work function.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: October 26, 2010
    Assignees: Renesas Electronics Corporation, Tokyo Electron Limited
    Inventors: Toshihide Nabatame, Masaru Kadoshima, Hiroyuki Takaba
  • Patent number: 7821098
    Abstract: A semiconductor structure. The semiconductor structure includes a semiconductor substrate, a trench in the semiconductor substrate. The trench comprises a side wall which includes {100} side wall surfaces and {110} side wall surfaces. The semiconductor structure further includes a blocking layer on the {100} side wall surfaces and the {110} side wall surfaces. The method further comprises the steps of removing portions of the blocking layer on the {110} side wall surfaces without removing portions of the blocking layer on the {100} side wall surfaces such that the {110} side wall surfaces are exposed to a surrounding ambient.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: October 26, 2010
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Ramachandra Divakaruni
  • Patent number: 7821062
    Abstract: A field effect transistor is provided having a source region, a drain region formed in a first well region, and a channel region. The first well region is doped with doping atoms of a first conductivity type. At least a part of the channel region which extends into the first well region is doped with doping atoms of a second conductivity type, the second conductivity type being a different conductivity type than the first conductivity type.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: October 26, 2010
    Assignee: Infineon Technologies AG
    Inventor: Harald Gossner
  • Patent number: 7816702
    Abstract: There are a silicon laser device having a IV-group semiconductor such as silicon or germanium equivalent to the silicon as a basic constituent element on a substrate made of the silicon, and the like by a method capable of easily forming the silicon laser device by using a general silicon process, and a manufacturing method thereof.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: October 19, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Shinichi Saito, Masahiro Aoki, Hiroyuki Uchiyama, Hideo Arimoto, Noriyuki Sakuma, Jiro Yamamoto
  • Patent number: 7816682
    Abstract: By increasing an interval between electrodes which drives liquid crystals, a gradient of an electric field applied between the electrodes can be controlled and an optimal electric field can be applied between the electrodes. The invention includes a first electrode formed over a substrate, an insulating film formed over the substrate and the first electrode, a thin film transistor including a semiconductor film in which a source, a channel region, and a drain are formed over the insulating film, a second electrode located over the semiconductor film and the first electrode and including first opening patterns, and liquid crystals provided over the second electrode.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: October 19, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hajime Kimura
  • Patent number: 7808066
    Abstract: An image sensor includes a semiconductor substrate including a pixel region and a peripheral circuit region; interlayer insulating films including metal wires arranged on the pixel region and the peripheral circuit region; and a photodiode and an upper electrode disposed on the interlayer insulating film of the pixel region. Further, the image sensor includes a protective layer disposed on the semiconductor substrate including the upper electrode and the interlayer insulating film of the peripheral circuit region and having a sloping portion in a region corresponding to the sidewall of the photodiode; via holes disposed on the protective layer so as to selectively expose the upper electrode and the metal wires of the peripheral circuit region; and upper wiring disposed on the protective layer including the via holes.
    Type: Grant
    Filed: October 12, 2008
    Date of Patent: October 5, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Kang-Hyun Lee
  • Patent number: 7808047
    Abstract: A trigger circuit is provided for a pull-down device by connecting a diode between the I/O pad and the body of the pull-down device. In one embodiment, the pull-down device is formed as a plurality of discrete transistors in a single well. The drain of each transistor is connected through a ballast resistor to the I/O pad; and the source of each transistor is connected through a ballast resistor to ground. The trigger circuit is a diode formed in a different well from that of the transistors. The cathode of the diode is connected to the I/O pad and the anode is connected to the transistor well through a center tap located between the transistors. Preferably, the transistors are NMOS transistors formed in a P-well. Advantageously, the diode is an N+/PLDD diode. Alternatively, the diode is an N+/P diode where the P region is formed by an ESD implant. In other embodiments the diode is formed in the same well as the transistors.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: October 5, 2010
    Assignee: Altera Corporation
    Inventors: Antonio Gallerano, Cheng-Hsiung Huang, Chih-Ching Shih, Jeffrey T. Watt
  • Patent number: 7808000
    Abstract: A thin film transistor with excellent electric characteristics, a display device having the thin film transistor, and a method for manufacturing the thin film transistor and the display device are proposed. The thin film transistor includes a gate insulating film formed over a gate electrode, a microcrystalline semiconductor film formed over the gate insulating film, a buffer layer formed over the microcrystalline semiconductor film, a pair of semiconductor films to which an impurity element imparting one conductivity type is added and which are formed over the buffer layer, and wirings formed over the pair of semiconductor films to which the impurity element imparting one conductivity type is added. A part of the gate insulating film or the entire gate insulating film, and/or a part of the microcrystalline semiconductor or the entire microcrystalline semiconductor includes an impurity element which serves as a donor.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: October 5, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yoshiyuki Kurokawa, Yasuhiro Jinbo, Satoshi Kobayashi, Daisuke Kawae
  • Patent number: 7804136
    Abstract: A method is provided for making a FET device in which a nitride layer overlies the PFET gate structure, where the nitride layer has a compressive stress with a magnitude greater than about 2.8 GPa. This compressive stress permits improved device performance in the PFET. The nitride layer is deposited using a high-density plasma (HDP) process, wherein the substrate is disposed on an electrode to which a bias power in the range of about 50 W to about 500 W is supplied. The bias power is characterized as high-frequency power (supplied by an RF generator at 13.56 MHz). The FET device may also include NFET gate structures. A blocking layer is deposited over the NFET gate structures so that the nitride layer overlies the blocking layer; after the blocking layer is removed, the nitride layer is not in contact with the NFET gate structures. The nitride layer has a thickness in the range of about 300-2000 ?.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: September 28, 2010
    Assignee: International Business Machines Corporation
    Inventors: Richard A. Conti, Ronald P. Bourque, Nancy R. Klymko, Anita Madan, Michael C. Smits, Roy H. Tilghman, Kwong Hon Wong, Daewon Yang
  • Patent number: 7795669
    Abstract: In accordance with an embodiment, a FinFET device includes: one or more fins, a dummy fin, a gate line, a gate contact landing pad, and a gate contact element. Each of the fins extends in a first direction above a substrate. The dummy fin extends in parallel with the fins in the first direction above the substrate. The gate line extends in a second direction above the substrate, and partially wraps around the fins. The gate contact landing pad is positioned adjacent to or above the dummy fin and electrically coupled to the gate line. The gate contact element is electrically coupled to the gate contact landing pad and is positioned to the top surface thereof.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: September 14, 2010
    Assignee: Infineon Technologies AG
    Inventors: Georg Georgakos, Bernhard Dobler
  • Patent number: 7795623
    Abstract: A light emitting device includes a p-type semiconductor layer, an n-type semiconductor layer, and an active region between the n-type semiconductor layer and the p-type semiconductor layer. A non-transparent feature, such as a wire bond pad, is on the p-type semiconductor layer or on the n-type semiconductor layer opposite the p-type semiconductor layer, and a reduced conductivity region is in the p-type semiconductor layer or the n-type semiconductor layer and is aligned with the non-transparent feature. The reduced conductivity region may extend from a surface of the p-type semiconductor layer opposite the n-type semiconductor layer towards the active region and/or from a surface of the n-type semiconductor layer opposite the p-type semiconductor layer towards the active region.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: September 14, 2010
    Assignee: Cree, Inc.
    Inventors: David Todd Emerson, Kevin Haberern, Michael John Bergmann, David B. Slater, Jr., Matthew Donofrio, John Edmond
  • Patent number: 7795731
    Abstract: In one embodiment, a semiconductor device has a topmost or highest conductive layer with at least one opening. The semiconductor device includes a semiconductor substrate having a cell array region and an interlayer insulating layer covering the substrate having the cell array region. The topmost conductive layer is disposed on the interlayer insulating layer in the cell array region. The topmost conductive layer has at least one opening. A method of fabricating the semiconductor device is also provided. The openings penetrating the topmost metal layer help hydrogen atoms reach the interfaces of gate insulating layers of cell MOS transistors and/or peripheral MOS transistors during a metal alloy process, thereby improve a performance (production yield and/or refresh characteristics) of a memory device.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: September 14, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Joo-Sung Park, Ae-Ran Hong
  • Patent number: 7791208
    Abstract: A power semiconductor arrangement is provided that includes a power semiconductor chip being electrically connected to a set of plug-like elements with at least two plug-like elements and further including a sheet metal strip line including a set of openings receiving the first set of plug-like elements, where the set of openings in the sheet metal strip line and the set of plug-like elements establish a press fit connection.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: September 7, 2010
    Assignee: Infineon Technologies AG
    Inventor: Reinhold Bayerer
  • Patent number: 7791142
    Abstract: Provided is an electrostatic discharge (ESD) protection diode including: a well formed of a first conductivity in a semiconductor substrate; an active region that is formed of a second conductivity in the well and includes a plurality of first active lines extending in a first direction; a sub-region of the first conductivity including a plurality of first sub-lines extending in the first direction, the first sub lines being formed in the well, arranged to surround an outer region of the first active lines, and arranged in alternation with the first active lines; a device isolation region separating the active regions and the sub-regions; a plurality of active contacts arranged in a row in the active regions; and a plurality of sub-contacts arranged in a row in the sub-region.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: September 7, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-shik Kim, Kyoung-mok Son
  • Patent number: 7791159
    Abstract: A solid-state imaging device comprises an imaging region, a peripheral circuit region formed in an outer peripheral portion of the imaging region, a first conductivity type semiconductor substrate having the imaging region and the peripheral circuit region on a main surface thereof, a second conductivity type first semiconductor layer formed in the semiconductor substrate, a first conductivity type second semiconductor layer formed in first semiconductor layer, a through electrode formed in a through hole penetrating through the semiconductor substrate in a thickness direction of the semiconductor substrate, and a pad portion formed on the semiconductor substrate and connected to the through electrode. The through hole penetrates through a first conductivity type region of the semiconductor substrate.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: September 7, 2010
    Assignee: Panasonic Corporation
    Inventor: Toshihiro Kuriyama