Patents Examined by Phat X. Cao
  • Patent number: 10854611
    Abstract: Some embodiments include a memory cell having a first transistor supported by a semiconductor base, and having second and third transistors above the first transistor and vertically stacked one atop the other. Some embodiments include a memory cell having first, second and third transistors. The third transistor is above the second transistor, and the second and third transistors are above the first transistor. The first transistor has first and second source/drain regions, the second transistor has third and fourth source/drain regions, and the third transistor has fifth and sixth source/drain regions. A read bitline is coupled with the sixth source/drain region. A write bitline is coupled with the first source/drain region. A write wordline includes a gate of the first transistor. A read wordline includes a gate of the third transistor. A capacitor is coupled with the second source/drain region and with a gate of the second transistor.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: December 1, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Suraj J. Mathew, Kris K. Brown, Raghunath Singanamalla, Vinay Nair, Fawad Ahmed, Fatma Arzum Simsek-Ege, Diem Thy N. Tran
  • Patent number: 10847516
    Abstract: Some embodiments include a memory cell having first, second and third transistors, with the second and third transistors being vertically displaced relative to one another. The memory cell has a semiconductor pillar extending along the second and third transistors, with the semiconductor pillar containing channel regions and source/drain regions of the second and third transistors. A capacitor may be electrically coupled between a source/drain region of the first transistor and a gate of the second transistor.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: November 24, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Suraj J. Mathew, Raghunath Singanamalla, Fawad Ahmed, Kris K. Brown, Vinay Nair, Gloria Yang, Fatma Arzum Simsek-Ege, Diem Thy N. Tran
  • Patent number: 10847621
    Abstract: Supposing x is defined as a position of an end of a depletion layer extending when a rated voltage V [V] is applied to a rear surface electrode, W1 is defined as a distance between the position x and an outer peripheral edge of a surface electrode in an outer peripheral direction, W2 is defined as a distance between the position x and an outer peripheral edge of a field insulating film in the outer peripheral direction, t [?m] is defined as a film thickness t [?m] of the field insulating film, a layout of a terminal part is defined so that an electrical field in the field insulating film at the position x expressed as W2V/t(W1+W2) is 3 MV/cm or smaller.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: November 24, 2020
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kohei Ebihara, Hiroshi Watanabe
  • Patent number: 10847442
    Abstract: A semiconductor device in accordance with some embodiments includes a substrate structure and a conductive interconnect extending through at least a portion of the substrate structure. The conductive interconnect can include a through-silicon via and a stress-relief feature that accommodates thermal expansion and/or thermal contraction of material to manage internal stresses in the semiconductor device. Methods of manufacturing the semiconductor device in accordance with some embodiments includes removing material of the conductive interconnect to form the stress-relief gap.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: November 24, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Hongqi Li, Anurag Jindal, Jin Lu, Gowrisankar Damarla, Shyam Ramalingam
  • Patent number: 10847644
    Abstract: A gallium nitride transistor includes one or more P-type hole injection structures that are positioned between the gate and the drain. The P-type hole injection structures are configured to inject holes in the transistor channel to combine with trapped carriers (e.g., electrons) so the electrical conductivity of the channel is less susceptible to previous voltage potentials applied to the transistor.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: November 24, 2020
    Assignee: NAVITAS SEMICONDUCTOR LIMITED
    Inventors: Daniel M. Kinzer, Maher J. Hamdan
  • Patent number: 10825770
    Abstract: A semiconductor device according to one embodiment includes a semiconductor substrate, a stack body including metal films and first insulating films alternately stacked on the semiconductor substrate and including a stepped end portion, conducting films respectively protruding from the metal films on all steps of the end portion, contact portions respectively provided above the conducting films, a second insulating film surrounding side surfaces of the contact portions, and a barrier metal film provided between the second insulating film and the contact portions and between the conducting films and the contact portions. The entire top surfaces of the conducting films are covered by the barrier metal film and the second insulating film.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: November 3, 2020
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Akitsugu Hatazaki, Hiroko Tahara, Naomi Fukumaki, Masayuki Kitamura, Takashi Ohashi
  • Patent number: 10818749
    Abstract: A semiconductor device includes a plurality of drift regions of a plurality of field effect transistor structures arranged in a semiconductor substrate. The plurality of drift regions has a first conductivity type. The semiconductor device further includes a plurality of compensation regions arranged in the semiconductor substrate. The plurality of compensation regions has a second conductivity type. Each drift region of the plurality of drift regions is arranged adjacent to at least one compensation region of the plurality of compensation regions. The semiconductor device further includes a Schottky diode structure or metal-insulation-semiconductor gated diode structure arranged at the semiconductor substrate.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: October 27, 2020
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Wolfgang Bergner, Jens Peter Konrath, Dethard Peters, Reinhold Schoerner
  • Patent number: 10818826
    Abstract: A manufacturing method of a light emitting diode apparatus is provided. This method includes forming a light emitting diode on the substrate, forming a light leakage preventing layer to surround the side surface of the light emitting diode, etching a region corresponding to the light emitting diode in the substrate, and bonding a wavelength converting material to a lower portion of the light emitting diode in the etched region, in which the wavelength converting material includes a semiconductor layer including a quantum well layer.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: October 27, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jin-hee Kang, Ji-Hoon Kang, Seong-woo Cho
  • Patent number: 10818639
    Abstract: A 3D stack includes a first chip having first interconnection pads of rectangular section, the first interconnection pads having a first pitch in a first direction and a second pitch in a second direction perpendicular to the first direction; and a second chip having second interconnection pads, the second interconnection pads having a third pitch in the first direction and a fourth pitch in the second direction, at least one part of the second interconnection pads being in contact with the first interconnection pads to electrically couple the first and second chips. The first interconnection pads have a first dimension in the first direction equal to m times the third pitch and a second dimension in the second direction equal to n times the fourth pitch. The first interconnection pads are separated two by two in the first direction by a first distance equal to q times the third pitch.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: October 27, 2020
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventor: Didier Lattard
  • Patent number: 10804408
    Abstract: Embodiments described herein provide thin film transistors (TFTs) and processes to reduce plasma induced damage in TFTs. In one embodiment, a buffer layer is disposed over a substrate and a semiconductor layer is disposed over the buffer layer. A gate dielectric layer is disposed over the semiconductor layer. The gate dielectric layer contacts the semiconductor layer at an interface. The gate electrode 204 is disposed over the gate dielectric layer. The gate dielectric layer has a Dit of about 5e10 cm?2eV?1 to about 5e11 cm?2eV?1 and a hysteresis of about 0.10 V to about 0.30 V improve performance capability of the TFT while having a breakdown field between about 6 MV/cm and about 10 MV/cm.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: October 13, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jianheng Li, Lai Zhao, Yujia Zhai, Soo Young Choi
  • Patent number: 10790189
    Abstract: An integrated circuit structure includes a package component, which further includes a non-porous dielectric layer having a first porosity, and a porous dielectric layer over and contacting the non-porous dielectric layer, wherein the porous dielectric layer has a second porosity higher than the first porosity. A bond pad penetrates through the non-porous dielectric layer and the porous dielectric layer. A dielectric barrier layer is overlying, and in contact with, the porous dielectric layer. The bond pad is exposed through the dielectric barrier layer. The dielectric barrier layer has a planar top surface. The bond pad has a planar top surface higher than a bottom surface of the dielectric barrier layer.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: September 29, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsun-Chung Kuang, Yen-Chang Chu, Cheng-Tai Hsiao, Ping-Yin Liu, Lan-Lin Chao, Yeur-Luen Tu, Chia-Shiung Tsai, Xiaomeng Chen
  • Patent number: 10756121
    Abstract: A conductor structure includes a first metal layer, a second metal layer, and a controlling layer. The second metal layer is disposed on the first metal layer. A material of the first metal layer and a material of the second metal layer include at least one identical metal element. The controlling layer is disposed between the first metal layer and the second metal layer. A thickness of the controlling layer is less than a thickness of the first metal layer, and the thickness of the controlling layer is less than a thickness of the second metal layer.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: August 25, 2020
    Assignee: Innolux Corporation
    Inventors: Ming-Chun Chen, Hsu-Min Huang, Shih-Sian Yang
  • Patent number: 10748945
    Abstract: A solid-state imaging device is provided that includes a pixel array with unit pixels. Each unit pixel includes, among other things, first and second photoelectric conversion portions; an electric charge accumulating portion that accumulates charges produced by the second photoelectric conversion portion, a counter electrode of the electric charge accumulating portion being connected to a variable voltage power source; and a charge-to-voltage conversion portion. For at least a part of a time period for which charges produced by the second photoelectric conversion portion are accumulated in the electric charge accumulating portion, a drive portion that controls an operation of the unit pixel causes a voltage of the variable voltage power source to be lower than that when a signal based on the charges accumulated in the electric charge accumulating portion is read out.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: August 18, 2020
    Assignee: Sony Corporation
    Inventor: Takumi Oka
  • Patent number: 10749032
    Abstract: Techniques are disclosed for forming transistors including one or more group III-V semiconductor material nanowires using sacrificial group IV semiconductor material layers. In some cases, the transistors may include a gate-all-around (GAA) configuration. In some cases, the techniques may include forming a replacement fin stack that includes group III-V material layer (such as indium gallium arsenide, indium arsenide, or indium antimonide) formed on a group IV material buffer layer (such as silicon, germanium, or silicon germanium), such that the group IV buffer layer can be later removed using a selective etch process to leave the group III-V material for use as a nanowire in a transistor channel. In some such cases, the group III-V material layer may be grown pseudomorphically to the underlying group IV material, so as to not form misfit dislocations. The techniques may be used to form transistors including any number of nanowires.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: August 18, 2020
    Assignee: Intel Corporation
    Inventors: Chandra S. Mohapatra, Glenn A. Glass, Anand S. Murthy, Karthik Jambunathan, Willy Rachmady, Gilbert Dewey, Tahir Ghani, Jack T. Kavalieros
  • Patent number: 10720409
    Abstract: In some embodiments, a device includes a thermal-electrical-mechanical (TEM) chip having a functional circuit, a first die attached to a first side of the TEM chip, and a first via on the first side of the TEM chip and adjacent to the first die, the first via being electrically coupled to the TEM chip. The device also includes a first molding layer surrounding the TEM chip, the first die and the first via, where an upper surface of the first die and an upper surface of the first via are level with an upper surface of the first molding layer. The device further includes a first redistribution layer over the upper surface of the first molding layer and electrically coupled to the first via and the first die.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: July 21, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Der-Chyang Yeh, Hsien-Wei Chen, Li-Hsien Huang, Yueh-Ting Lin, Wei-Yu Chen, An-Jhih Su
  • Patent number: 10714587
    Abstract: A method for fabricating a semiconductor component includes forming an interlayer dielectric (ILD) layer on a substrate, forming a trench in the interlayer dielectric layer, forming a metal gate in the trench, removing a portion of the metal gate protruding from the ILD layer, reacting a reducing gas with the metal gate, and removing a top portion of the metal gate.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: July 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Po-Chi Wu, Chai-Wei Chang, Jung-Jui Li, Ya-Lan Chang, Yi-Cheng Chao
  • Patent number: 10714686
    Abstract: Variable resistance memory devices and methods of forming the same are provided. The variable resistance memory devices may include a substrate including a cell region and a peripheral region, first conductive lines on the substrate, second conductive lines traversing the first conductive lines, variable resistance structures at intersecting points of the first conductive lines and the second conductive lines, and bottom electrodes between the first conductive lines and the variable resistance structures. The cell region may include a boundary region contacting the peripheral region, and one of the first conductive lines is electrically insulated from one of the variable resistance structures that is on the boundary region and overlaps the one of the first conductive lines.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: July 14, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sungwon Kim, Sung-Ho Eun, Ilmok Park, Junghoon Park, Seulji Song, Ji-Hyun Jeong
  • Patent number: 10707265
    Abstract: A display device is provided. The display device includes a substrate, and a first sub-pixel and a second sub-pixel disposed on the substrate, wherein the first sub-pixel and the second sub-pixel respectively correspond to two different colors. The first sub-pixel includes a first light-emitting element and a first wavelength conversion layer adjacent to the first light-emitting element, wherein a light emitted from the first light-emitting element passes through the first wavelength conversion layer. The second sub-pixel includes a second light-emitting element and a second wavelength conversion layer adjacent to the second light-emitting element, wherein a light emitted from the second light-emitting element passes through the second wavelength conversion layer. An area of the first wavelength conversion layer and an area of the second wavelength conversion layer are different.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: July 7, 2020
    Assignee: IINOLUX CORPORATION
    Inventors: Kuan-Feng Lee, Yuan-Lin Wu, Yu-Hsien Wu
  • Patent number: 10699982
    Abstract: A semiconductor package and a method of manufacturing a semiconductor package are disclosed. The semiconductor package including a first substrate including a first cavity, a cavity mold configured to be inserted into the first cavity and including a second cavity, an electronic component inserted in the second cavity, and a second substrate formed on a surface of the first substrate, a surface of the cavity mold and a surface of the electronic component.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: June 30, 2020
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventor: Yong-Ho Baek
  • Patent number: 10692995
    Abstract: The present invention provides an insulated-gate bipolar transistor (IGBT) structure and a method for manufacturing the same. The structure is a planar IGBT structure, and is characterized by an ultra-thin channel and buried oxide located below the channel. The structure can provide the theoretically lowest on-state voltage drop.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: June 23, 2020
    Inventor: Ka Kit Wong