Patents Examined by Richard A. Booth
  • Patent number: 11913136
    Abstract: In various embodiments, controlled heating and/or cooling conditions are utilized during the fabrication of aluminum nitride single crystals and aluminum nitride bulk polycrystalline ceramics. Thermal treatments may also be utilized to control properties of aluminum nitride crystals after fabrication.
    Type: Grant
    Filed: January 5, 2023
    Date of Patent: February 27, 2024
    Assignee: CRYSTAL IS, INC.
    Inventors: Robert T. Bondokov, Jianfeng Chen, Keisuke Yamaoka, Shichao Wang, Shailaja P. Rao, Takashi Suzuki, Leo J. Schowalter
  • Patent number: 11908687
    Abstract: A device includes a layer including a first III-Nitride (III-N) material, a channel layer including a second III-N material, a release layer including nitrogen and a transition metal, where the release layer is between the first III-N material and the second III-N material. The device further includes a polarization layer including a third III-N material above the release layer, a gate structure above the polarization layer, a source structure and a drain structure on opposite sides of the gate structure where the source structure and the drain structure each include a fourth III-N material. The device further includes a source contact on the source structure and a drain contact on the drain structure.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: February 20, 2024
    Assignee: Intel Corporation
    Inventors: Khaled Ahmed, Anup Pancholi, John Heck, Thomas Sounart, Harel Frish, Sansaptak Dasgupta
  • Patent number: 11908943
    Abstract: The disclosed technology generally relates to ferroelectric materials and semiconductor devices, and more particularly to semiconductor memory devices incorporating doped polar materials. In one aspect, a semiconductor device comprises a capacitor which in turn comprises a polar layer comprising a base polar material doped with a dopant. The base polar material includes one or more metal elements and one or both of oxygen or nitrogen. The dopant comprises a metal element that is different from the one or more metal elements and is present at a concentration such that a ferroelectric switching voltage of the capacitor is different from that of the capacitor having the base polar material without being doped with the dopant by more than about 100 mV. The capacitor stack additionally comprises first and second crystalline conductive oxide electrodes on opposing sides of the polar layer.
    Type: Grant
    Filed: March 9, 2023
    Date of Patent: February 20, 2024
    Assignee: Kepler Computing Inc.
    Inventors: Ramesh Ramamoorthy, Sasikanth Manipatruni, Gaurav Thareja
  • Patent number: 11910607
    Abstract: A three-dimensional semiconductor memory device is disclosed. The device may include a first source conductive pattern comprising a polycrystalline material including first crystal grains on a substrate, the substrate may comprising a polycrystalline material including second crystal grains, a grain size of the first crystal grains being smaller than a grain size of the second crystal grains, a stack including a plurality of gate electrodes, the plurality of gates stacked on the first source conductive pattern, and a vertical channel portion penetrating the stack and the first source conductive pattern, and the vertical channel portion being in contact with a side surface of the first source conductive pattern.
    Type: Grant
    Filed: August 5, 2022
    Date of Patent: February 20, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Hwan Kim, Sunggil Kim, Dongkyum Kim, Seulye Kim, Ji-Hoon Choi
  • Patent number: 11901216
    Abstract: A substrate includes a first solid semiconductor region and a second semiconductor on insulator region. First and second cavities are simultaneously formed in the first and second regions, respectively, of the substrate using etching processes in two steps which form an upper portion and a lower portion of each cavity. The first and second cavities will each have a step at a level of an upper surface of the insulator of the second semiconductor on insulator region. A further oxidation of the first cavity produces a rounded or cut-off area for the upper portion.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: February 13, 2024
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Pascal Gouraud, Delia Ristoiu
  • Patent number: 11901403
    Abstract: A method for fabricating a semiconductor device includes: forming a mold structure including a mold layer and a supporter layer over a semiconductor substrate; forming an opening penetrating the mold structure; forming a protective layer on a bottom surface and a sidewall of the opening; forming a lower electrode over the protective layer; selectively etching the supporter layer to form a supporter that supports the lower electrode; removing the mold layer to define a non-exposed portion and an exposed portion of an outer wall of the protective layer; and selectively trimming the exposed portion of the protective layer to form a protective layer pattern between the supporter and the lower electrode.
    Type: Grant
    Filed: August 30, 2022
    Date of Patent: February 13, 2024
    Assignee: SK hynix Inc.
    Inventors: Jun Hyuk Seo, Myoung Sik Chang
  • Patent number: 11901355
    Abstract: In an embodiment, a semiconductor device includes: a main transistor having a load path; a sense transistor configured to sense a main current flowing in the load path of the main transistor; and a bypass diode structure configured to protect the sense transistor and electrically coupled in parallel with the sense transistor. A sense transistor cell of the sense transistor includes a sense trench and a sense mesa. The sense trench and a bypass diode trench of the bypass diode structure form a common trench. The sense mesa and a bypass diode mesa of the bypass diode structure form a common mesa.
    Type: Grant
    Filed: December 21, 2022
    Date of Patent: February 13, 2024
    Assignee: Infineon Technologies Austria AG
    Inventors: Gerhard Noebauer, Florian Gasser
  • Patent number: 11903259
    Abstract: A flexible display panel is provided. The flexible display panel includes an array substrate, an organic light-emitting layer, a cathode layer, an optical coupling output layer, and a thin film encapsulation layer stacked on each other. The organic light-emitting layer includes a red pixel unit, a green pixel unit, and a blue pixel unit. The optical coupling output layer is arranged corresponding to the red pixel unit and the green pixel unit. The thin film encapsulation layer corresponding to the blue pixel unit of the organic light-emitting layer is in contact with the cathode layer.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: February 13, 2024
    Assignee: WUHAN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventor: Jiangjiang Jin
  • Patent number: 11901404
    Abstract: Embodiments herein describe techniques for a semiconductor device including a three dimensional capacitor. The three dimensional capacitor includes a pole, and one or more capacitor units stacked around the pole. A capacitor unit of the one or more capacitor units includes a first electrode surrounding and coupled to the pole, a dielectric layer surrounding the first electrode, and a second electrode surrounding the dielectric layer. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: January 18, 2022
    Date of Patent: February 13, 2024
    Assignee: Intel Corporation
    Inventors: Sudipto Naskar, Manish Chandhok, Abhishek A. Sharma, Roman Caudillo, Scott B. Clendenning, Cheyun Lin
  • Patent number: 11895846
    Abstract: A ferroelectric field-effect transistor (FeFET) includes first and second gate electrodes, source and drain regions, a semiconductor region between and physically connecting the source and drain regions, a first gate dielectric between the semiconductor region and the first gate electrode, and a second gate dielectric between the semiconductor region and the second gate electrode. The first gate dielectric includes a ferroelectric dielectric. In an embodiment, a memory cell includes this FeFET, with the first gate electrode being electrically connected to a wordline and the drain region being electrically connected to a bitline. In another embodiment, a memory array includes wordlines extending in a first direction, bitlines extending in a second direction, and a plurality of such memory cells at crossing regions of the wordlines and the bitlines. In each memory cell, the wordline is a corresponding one of the wordlines and the bitline is a corresponding one of the bitlines.
    Type: Grant
    Filed: February 16, 2022
    Date of Patent: February 6, 2024
    Assignee: Intel Corporation
    Inventors: Abhishek A. Sharma, Brian S. Doyle, Ravi Pillarisetty, Prashant Majhi, Elijah V. Karpov
  • Patent number: 11888433
    Abstract: The present disclosure provides an apparatus (100) for aligning a solar cell element (10). The apparatus (100) includes a transfer device (110) configured for moving the solar cell element (10) from a first position on a carrying device (140) to a second position on a support device, a first detection device (120) configured to detect information about a first position of the solar cell element on the carrying device, and a second detection device (126) configured to detect information about an intermediate position of the solar cell element in relation to the transfer device (110), the transfer device being configured to adjust the orientation of the transfer device based on the information about the first position.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: January 30, 2024
    Assignee: APPLIED MATERIALS ITALIA S.R.L.
    Inventor: Luigi De Santi
  • Patent number: 11889701
    Abstract: Memory cells include various versions of a capacitor structure including a polarization retention member. Each polarization retention member includes an antiferroelectric layer over a ferroelectric layer. The antiferroelectric layer, among other layers, can be tailored to customize the hysteresis loop shape, and the coercive electric field required to change polarization of the memory cell. Metal electrodes, and/or dielectric or metallic interlayers may also be employed to tailor the hysteresis. The memory cells can include FeRAMs or FeFETs. The memory cells provide a lower coercive electric field requirement compared to conventional ferroelectric memory cells, enhanced reliability, and require minimum changes to integrate into current integrated circuit fabrication processes.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: January 30, 2024
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Tarek Ali, Konstantin H. J. Mertens, Maximilian W. Lederer, David J. Lehninger, Konrad Seidel
  • Patent number: 11888066
    Abstract: The disclosed technology generally relates to ferroelectric materials and semiconductor devices, and more particularly to semiconductor memory devices incorporating doped polar materials. In one aspect, a semiconductor device comprises a capacitor which in turn comprises a polar layer comprising a base polar material doped with a dopant. The base polar material includes one or more metal elements and one or both of oxygen or nitrogen. The dopant comprises a metal element that is different from the one or more metal elements and is present at a concentration such that a ferroelectric switching voltage of the capacitor is different from that of the capacitor having the base polar material without being doped with the dopant by more than about 100 mV. The capacitor stack additionally comprises first and second crystalline conductive oxide electrodes on opposing sides of the polar layer.
    Type: Grant
    Filed: December 16, 2022
    Date of Patent: January 30, 2024
    Assignee: Kepler Computing Inc.
    Inventors: Ramesh Ramamoorthy, Sasikanth Manipatruni, Gaurav Thareja
  • Patent number: 11888067
    Abstract: The disclosed technology generally relates to ferroelectric materials and semiconductor devices, and more particularly to semiconductor memory devices incorporating doped polar materials. In one aspect, a semiconductor device comprises a capacitor which in turn comprises a polar layer comprising a base polar material doped with a dopant. The base polar material includes one or more metal elements and one or both of oxygen or nitrogen. The dopant comprises a metal element that is different from the one or more metal elements and is present at a concentration such that a ferroelectric switching voltage of the capacitor is different from that of the capacitor having the base polar material without being doped with the dopant by more than about 100 mV. The capacitor stack additionally comprises first and second crystalline conductive oxide electrodes on opposing sides of the polar layer.
    Type: Grant
    Filed: March 10, 2023
    Date of Patent: January 30, 2024
    Assignee: Kepler Computing Inc.
    Inventors: Ramesh Ramamoorthy, Sasikanth Manipatruni, Gaurav Thareja
  • Patent number: 11888019
    Abstract: Some embodiments include a ferroelectric device having a ferroelectric insulative material which includes zinc. Some embodiments include a capacitor having a ferroelectric insulative material between a first electrode and a second electrode. The ferroelectric insulative material includes one or more metal-oxide-containing layers and one or more zinc-containing layers. Some embodiments include a memory array having a first set of first conductive structures and a second set of second conductive structures. The first conductive structures are coupled with driver circuitry, and the second conductive structures are coupled with sensing circuitry. The memory array includes an array of access devices. Each of the access devices is uniquely addressed by one of the first conductive structures in combination with one of the second conductive structures. Ferroelectric capacitors are coupled with the access devices. Each of the ferroelectric capacitors includes ferroelectric insulative material having zinc.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: January 30, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Mikhail A. Treger, Albert Liao
  • Patent number: 11889677
    Abstract: A method for forming capacitor holes is provided. By forming a first material layer and a second material layer which are thinner and are different in materials on a supporting layer as an over-etching depth adjusting layer, when etching holes are formed in a hard mask layer and the hard mask layer is over-etched, a certain over-etching depth may be formed in the second material layer, and the etching holes terminate in the first material layer, so that the etching depth of the etching holes can be corrected and adjusted. Accordingly, the etching holes formed after the hard mask layer is over-etched can have the same depth or have a small depth difference. Therefore, time points at which the plurality of capacitors holes formed expose the corresponding connecting pads are substantially the same or differ very little, improving the performance of the DRAM.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: January 30, 2024
    Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventors: Xifei Bao, Jinguo Fang
  • Patent number: 11881394
    Abstract: A stack includes a base portion consisting of silicon carbide and having a first surface that is a Si face and a carbon atom thin film disposed on the first surface and including a first main surface facing the first surface and a second main surface that is a main surface on an opposite side from the first main surface. The carbon atom thin film consists of carbon atoms. The carbon atom thin film includes at least one of a buffer layer that is a carbon atom layer including carbon atoms bonded to silicon atoms forming the Si face and a graphene layer. The second main surface includes a plurality of terraces parallel to the Si face of the silicon carbide forming the base portion and a plurality of steps connecting together the plurality of terraces.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: January 23, 2024
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Fuminori Mitsuhashi, Yasunori Tateno, Masahiro Adachi, Yoshiyuki Yamamoto
  • Patent number: 11877447
    Abstract: Disposed are a semiconductor structure, a manufacturing method thereof and a flash memory. The semiconductor structure includes a substrate, first isolation structures, a gate structure and an oxide layer. The first isolation structures define a first active area in a peripheral region of the substrate. The oxide layer is disposed on the substrate in the first active area and covered by the first isolation structures. The oxide layer and the first isolation structures define an opening exposing the substrate. The gate structure is disposed on the substrate in the first active area and includes a gate dielectric layer disposed in the opening and a gate disposed on the gate dielectric layer. The oxide layer is located around the gate dielectric layer. The width of the bottom surface of the gate is less than that of the top surface of the first active area.
    Type: Grant
    Filed: April 10, 2023
    Date of Patent: January 16, 2024
    Assignee: Winbond Electronics Corp.
    Inventors: Yao-Ting Tsai, Hsiu-Han Liao, Che-Fu Chuang
  • Patent number: 11877438
    Abstract: A method used in forming an array of memory cells comprises forming a vertical stack comprising transistor material directly above and directly against a first capacitor electrode material. A mask is used to subtractively etch both the transistor material and thereafter the first capacitor electrode material to form a plurality of pillars that individually comprise the transistor material and the first capacitor electrode material. Capacitors are formed that individually comprise the first capacitor electrode material of individual of the pillars. Vertical transistors are formed above the capacitors that individually comprise the transistor material of the individual pillars. Other aspects and embodiments are disclosed, including structure independent of method.
    Type: Grant
    Filed: December 7, 2022
    Date of Patent: January 16, 2024
    Assignee: Micron Technology, Inc.
    Inventor: Antonino Rigano
  • Patent number: 11876116
    Abstract: A grid is manufactured with a combination of ion implant and epitaxy growth. The grid structure is made in a SiC semiconductor material with the steps of a) providing a substrate comprising a doped semiconductor SiC material, said substrate comprising a first layer (n1), b) by epitaxial growth adding at least one doped semiconductor SiC material to form separated second regions (p2) on the first layer (n1), if necessary with aid of removing parts of the added semiconductor material to form separated second regions (p2) on the first layer (n1), and c) by ion implantation at least once at a stage selected from the group consisting of directly after step a), and directly after step b); implanting ions in the first layer (n1) to form first regions (p1). It is possible to manufacture a grid with rounded corners as well as an upper part with a high doping level.
    Type: Grant
    Filed: April 27, 2022
    Date of Patent: January 16, 2024
    Assignee: II-VI DELAWARE, INC.
    Inventors: Adolf Schoner, Sergey Reshanov, Nicolas Thierry-Jebali, Hossein Elahipanah