Patents Examined by Richard A. Booth
  • Patent number: 11869843
    Abstract: A device includes, in a first region, a first conductive interconnect, an electrode structure on the first conductive interconnect, where the electrode structure includes a first conductive hydrogen barrier layer and a first conductive fill material. A memory device including a ferroelectric material or a paraelectric material is on the electrode structure. A second dielectric includes an amorphous, greater than 90% film density hydrogen barrier material laterally surrounds the memory device. A via electrode including a second conductive hydrogen barrier material is on at least a portion of the memory device. A second region includes a conductive interconnect structure embedded within a less than 90% film density material.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: January 9, 2024
    Assignee: KEPLER COMPUTING INC.
    Inventors: Noriyuki Sato, Niloy Mukherjee, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Somilkumar J. Rathi, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11871584
    Abstract: A device includes, in a first region, a first conductive interconnect, an electrode structure on the first conductive interconnect, where the electrode structure includes a first conductive hydrogen barrier layer and a first conductive fill material. A memory device including a ferroelectric material or a paraelectric material is on the electrode structure. A second dielectric includes an amorphous, greater than 90% film density hydrogen barrier material laterally surrounds the memory device. A via electrode including a second conductive hydrogen barrier material is on at least a portion of the memory device. A second region includes a conductive interconnect structure embedded within a less than 90% film density material.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: January 9, 2024
    Assignee: KEPLER COMPUTING INC.
    Inventors: Noriyuki Sato, Niloy Mukherjee, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Somilkumar J. Rathi, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11869768
    Abstract: Disclosed herein are a method of forming a transition metal dichalcogenide thin film and a method of manufacturing a device including the same. The method of forming a transition metal dichalcogenide thin film includes: providing a substrate in a reaction chamber; depositing a transition metal dichalcogenide thin film on the substrate using a sputtering process that uses a transition metal precursor and a chalcogen precursor and is performed at a first temperature; and injecting the chalcogen precursor in a gas state and heat-treating the transition metal dichalcogenide thin film at a second temperature that is higher than the first temperature. The substrate may include a sapphire substrate, a silicon oxide (SiO2) substrate, a nanocrystalline graphene substrate, or a molybdenum disulfide (MoS2) substrate.
    Type: Grant
    Filed: December 9, 2022
    Date of Patent: January 9, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Changhyun Kim, Sang-Woo Kim, Kyung-Eun Byun, Hyeonjin Shin, Ahrum Sohn, Jaehwan Jung
  • Patent number: 11869928
    Abstract: A device includes, in a first region, a first conductive interconnect, an electrode structure on the first conductive interconnect, where the electrode structure includes a first conductive hydrogen barrier layer and a first conductive fill material. A memory device including a ferroelectric material or a paraelectric material is on the electrode structure. A second dielectric includes an amorphous, greater than 90% film density hydrogen barrier material laterally surrounds the memory device. A via electrode including a second conductive hydrogen barrier material is on at least a portion of the memory device. A second region includes a conductive interconnect structure embedded within a less than 90% film density material.
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: January 9, 2024
    Assignee: KEPLER COMPUTING INC.
    Inventors: Noriyuki Sato, Niloy Mukherjee, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Somilkumar J. Rathi, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11862517
    Abstract: A device includes, in a first region, a first conductive interconnect, an electrode structure on the first conductive interconnect, where the electrode structure includes a first conductive hydrogen barrier layer and a first conductive fill material. A memory device including a ferroelectric material or a paraelectric material is on the electrode structure. A second dielectric includes an amorphous, greater than 90% film density hydrogen barrier material laterally surrounds the memory device. A via electrode including a second conductive hydrogen barrier material is on at least a portion of the memory device. A second region includes a conductive interconnect structure embedded within a less than 90% film density material.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: January 2, 2024
    Assignee: KEPLER COMPUTING INC.
    Inventors: Noriyuki Sato, Niloy Mukherjee, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Somilkumar J. Rathi, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11854914
    Abstract: A memory device includes a first memory block. The first memory block includes a first memory sub-array and a first interface portion disposed next to the first memory sub-array. The first memory block further includes a plurality of first interconnect structures electrically coupled to the first memory sub-array through the first interface portion, and a second plurality of interconnect structures configured to electrically couple a corresponding one of the plurality of first interconnect structures to a transistor. The memory device further includes a first test structure and a second test structure disposed next to the first memory block, each configured to simulate electrical connections of the plurality of second interconnect structures. The first and second test structures are electrically coupled to each other and are each electrically isolated form the first memory block.
    Type: Grant
    Filed: November 15, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Meng-Han Lin, Chia-En Huang
  • Patent number: 11856787
    Abstract: Semiconductor devices and methods of manufacture are provided wherein a ferroelectric random access memory array is formed with bit line drivers and source line drivers formed below the ferroelectric random access memory array. A through via is formed using the same processes as the processes used to form individual memory cells within the ferroelectric random access memory array.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Meng-Han Lin, Sai-Hooi Yeong, Chi On Chui
  • Patent number: 11855129
    Abstract: A capacitance structure comprises a metal nitride layer, such as a titanium nitride (TiN) layer, a compositionally graded film formed on a surface of the metal nitride layer by thermal oxidation, and a dielectric layer disposed on the compositionally graded film. A method of manufacturing a capacitance structure includes forming a conductive layer, performing thermal oxidation of a surface of the conductive layer to produce a compositionally graded film on the conductive layer, and forming a dielectric layer on the compositionally graded film.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Fu-Chiang Kuo
  • Patent number: 11856788
    Abstract: A method for fabricating a semiconductor device is provided. The method includes depositing a bottom electrode layer over a substrate; depositing a ferroelectric layer over the bottom electrode layer; depositing a first top electrode layer over the ferroelectric layer, wherein the first top electrode layer comprises a first metal; depositing a second top electrode layer over the first top electrode layer, wherein the second top electrode layer comprises a second metal, and a standard reduction potential of the first metal is greater than a standard reduction potential of the second metal; and removing portions of the second top electrode layer, the first top electrode layer, the ferroelectric layer, and the bottom electrode layer to form a memory stack, the memory stack comprising remaining portions of the second top electrode layer, the first top electrode layer, the ferroelectric layer, and the bottom electrode layer.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tzu-Yu Chen, Sheng-Hung Shih, Fu-Chen Chang, Kuo-Chi Tu, Wen-Ting Chu, Alexander Kalnitsky
  • Patent number: 11848386
    Abstract: The disclosed technology generally relates to ferroelectric materials and semiconductor devices, and more particularly to semiconductor memory devices incorporating doped polar materials. In one aspect, a semiconductor device comprises a capacitor which in turn comprises a polar layer comprising a base polar material doped with a dopant. The base polar material includes one or more metal elements and one or both of oxygen or nitrogen. The dopant comprises a metal element that is different from the one or more metal elements and is present at a concentration such that a ferroelectric switching voltage of the capacitor is different from that of the capacitor having the base polar material without being doped with the dopant by more than about 100 mV. The capacitor stack additionally comprises first and second crystalline conductive oxide electrodes on opposing sides of the polar layer.
    Type: Grant
    Filed: March 9, 2023
    Date of Patent: December 19, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Ramesh Ramamoorthy, Sasikanth Manipatruni, Gaurav Thareja
  • Patent number: 11848191
    Abstract: Producing a semiconductor or piezoelectric on-insulator type substrate for RF applications which is provided with a porous layer under the BOX layer and under a layer of polycrystalline semiconductor material.
    Type: Grant
    Filed: December 15, 2021
    Date of Patent: December 19, 2023
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Emmanuel Augendre, Shay Reboh, Pablo Acosta Alba, Thomas Lorne, Emmanuel Rolland
  • Patent number: 11844203
    Abstract: A device includes, in a first region, a first conductive interconnect, an electrode structure on the first conductive interconnect, where the electrode structure includes a first conductive hydrogen barrier layer and a first conductive fill material. A memory device including a ferroelectric material or a paraelectric material is on the electrode structure. A second dielectric includes an amorphous, greater than 90% film density hydrogen barrier material laterally surrounds the memory device. A via electrode including a second conductive hydrogen barrier material is on at least a portion of the memory device. A second region includes a conductive interconnect structure embedded within a less than 90% film density material.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: December 12, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Noriyuki Sato, Niloy Mukherjee, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Somilkumar J. Rathi, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11844225
    Abstract: A device includes, in a first region, a first conductive interconnect, an electrode structure on the first conductive interconnect, where the electrode structure includes a first conductive hydrogen barrier layer and a first conductive fill material. A memory device including a ferroelectric material or a paraelectric material is on the electrode structure. A second dielectric includes an amorphous, greater than 90% film density hydrogen barrier material laterally surrounds the memory device. A via electrode including a second conductive hydrogen barrier material is on at least a portion of the memory device. A second region includes a conductive interconnect structure embedded within a less than 90% film density material.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: December 12, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Noriyuki Sato, Niloy Mukherjee, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Somilkumar J. Rathi, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11844226
    Abstract: A method includes forming a bottom electrode layer, and depositing a first ferroelectric layer over the bottom electrode layer. The first ferroelectric layer is amorphous. A second ferroelectric layer is deposited over the first ferroelectric layer, and the second ferroelectric layer has a polycrystalline structure. The method further includes depositing a third ferroelectric layer over the second ferroelectric layer, with the third ferroelectric layer being amorphous, depositing a top electrode layer over the third ferroelectric layer, and patterning the top electrode layer, the third ferroelectric layer, the second ferroelectric layer, the first ferroelectric layer, and the bottom electrode layer to form a Ferroelectric Random Access Memory cell.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: December 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Bi-Shen Lee, Yi Yang Wei, Hsing-Lien Lin, Hsun-Chung Kuang, Cheng-Yuan Tsai, Hai-Dang Trinh
  • Patent number: 11843026
    Abstract: A method for manufacturing a semiconductor structure and a semiconductor structure are provided. The method includes: providing a substrate, and forming a first isolating layer, a first stabilizing layer, a second isolating layer and a second stabilizing layer, which are sequentially stacked onto one another, on the substrate; forming a through hole penetrating through the first isolating layer, the first stabilizing layer, the second isolating layer and the second stabilizing layer, and forming a lower electrode on a side wall and a bottom portion of the through hole; removing a portion of a thickness of the second stabilizing layer to expose a portion of the lower electrode; forming a mask layer on a side wall of the exposed lower electrode; and etching the second stabilizing layer by using the mask layer as a mask to form a first opening.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: December 12, 2023
    Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventor: Chih-Cheng Liu
  • Patent number: 11839088
    Abstract: A device includes, in a first region, a first conductive interconnect, an electrode structure on the first conductive interconnect, where the electrode structure includes a first conductive hydrogen barrier layer and a first conductive fill material. A memory device including a ferroelectric material or a paraelectric material is on the electrode structure. A second dielectric includes an amorphous, greater than 90% film density hydrogen barrier material laterally surrounds the memory device. A via electrode including a second conductive hydrogen barrier material is on at least a portion of the memory device. A second region includes a conductive interconnect structure embedded within a less than 90% film density material.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: December 5, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Noriyuki Sato, Niloy Mukherjee, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Somilkumar J. Rathi, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11839070
    Abstract: A device includes, in a first region, a first conductive interconnect, an electrode structure on the first conductive interconnect, where the electrode structure includes a first conductive hydrogen barrier layer and a first conductive fill material. A memory device including a ferroelectric material or a paraelectric material is on the electrode structure. A second dielectric includes an amorphous, greater than 90% film density hydrogen barrier material laterally surrounds the memory device. A via electrode including a second conductive hydrogen barrier material is on at least a portion of the memory device. A second region includes a conductive interconnect structure embedded within a less than 90% film density material.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: December 5, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Noriyuki Sato, Niloy Mukherjee, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Somilkumar J. Rathi, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11830771
    Abstract: Implementations of a method of separating a semiconductor substrate from a boule including a semiconductor material may include creating a damage layer in a first end of a boule including semiconductor material; heating the boule; and cooling the boule to separate one or more semiconductor substrates from the boule at the damage layer.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: November 28, 2023
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Michael J. Seddon
  • Patent number: 11830918
    Abstract: A memory device is provided. The memory device includes a semiconductor substrate, a tunneling layer, a floating gate electrode, a dielectric layer, and a control gate electrode. The semiconductor substrate has an active region. The tunneling layer is over the active region of the semiconductor substrate. The floating gate electrode is over the tunneling layer. The floating gate electrode has a first portion and a second portion electrically connected to the first portion. The dielectric layer is over the floating gate electrode. The control gate electrode is over the dielectric layer. The control gate electrode has a first portion interposed between the first and second portions of the floating gate electrode.
    Type: Grant
    Filed: June 10, 2022
    Date of Patent: November 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Chu Lin, Chi-Chung Jen, Yen-Di Wang, Jia-Yang Ko, Men-Hsi Tsai
  • Patent number: 11832451
    Abstract: Non lead-based perovskite ferroelectric devices for high density memory and logic applications and methods of fabrication are described. While various embodiments are described with reference to FeRAM, capacitive structures formed herein can be used for any application where a capacitor is desired. For example, the capacitive structure can be used for fabricating ferroelectric based or paraelectric based majority gate, minority gate, and/or threshold gate.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: November 28, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Debraj Guhabiswas, Maria Isabel Perez, Jason Y. Wu, James David Clarkson, Gabriel Antonio Paulius Velarde, Niloy Mukherjee, Noriyuki Sato, Amrita Mathuriya, Sasikanth Manipatruni, Ramamoorthy Ramesh