Patents Examined by Richard A. Booth
  • Patent number: 11737268
    Abstract: The present disclosure provides a stack capacitor, a flash memory device, and a manufacturing method thereof. The stack capacitor of the flash memory device has a a memory transistor structure which at least comprises a substrate, and a tunneling oxide layer, a floating gate layer, an interlayer dielectric layer and a control gate layer which are sequentially stacked on the substrate, the interlayer dielectric layer of the stack capacitor comprises a first oxide layer and a nitride layer; the stack capacitor further comprises a first contact leading out of the control gate layer and a second contact leading out of the floating gate layer. The capacitance per unit area of the stack capacitor provided by the disclosure is effectively improved, and the size of the transistor device is reduced. The manufacturing method according to the disclosure does not add any additional photomask than a conventional process flow.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: August 22, 2023
    Assignee: Shanghai Huali Integrated Circuit Corporation
    Inventors: Zhi Tian, Juanjuan Li, Hua Shao, Haoyu Chen
  • Patent number: 11729992
    Abstract: Provided is a nonvolatile memory device including a lower electrode on a substrate, an upper electrode on the lower electrode, a tunnel barrier pattern between the lower electrode and the upper electrode, and a fixed charge pattern in contact with the lower electrode and spaced apart from the tunnel barrier pattern with the lower electrode therebetween. The tunnel barrier pattern includes an anti-ferroelectric material. The lower electrode includes a first material. The upper electrode includes a second material. The first material and the second material have different work functions.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: August 15, 2023
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Sanghun Jeon, Youngin Goh
  • Patent number: 11728207
    Abstract: A method for fabricating a strained semiconductor-on-insulator substrate comprises bonding a donor substrate to a receiving substrate with a dielectric layer at the interface. The donor substrate comprises a monocrystalline carrier substrate, an intermediate etch-stop layer, and a monocrystalline semiconductor layer. The monocrystalline semiconductor layer is transferred from the donor substrate to the receiving substrate. Trench isolations are formed to cut a portion from a layer stack including the transferred monocrystalline semiconductor layer, the dielectric layer, and the strained semiconductor material layer. The cutting operation results in relaxation of strain in the strained semiconductor material, and in application of strain to the transferred monocrystalline semiconductor layer.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: August 15, 2023
    Assignee: Soitec
    Inventors: Walter Schwarzenbach, Guillaume Chabanne, Nicolas Daval
  • Patent number: 11729993
    Abstract: Ferroelectric random access memory (FRAM) capacitors and methods of forming FRAM capacitors are provided. An FRAM capacitor may be formed between adjacent metal interconnect layers or between a silicided active layer (e.g., including MOSFET devices) and a first metal interconnect layer. The FRAM capacitor may be formed by a damascene process including forming a tub opening in a dielectric region, forming a cup-shaped bottom electrode, forming a cup-shaped ferroelectric element in an interior opening defined by the cup-shaped bottom electrode, and forming a top electrode in an interior opening defined by the cup-shaped ferroelectric element. The FRAM capacitor may form a component of an FRAM memory cell. For example, an FRAM memory cell may include one FRAM capacitor and one transistor (1T1C configuration) or two FRAM capacitors and two transistor (2T2C configuration).
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: August 15, 2023
    Assignee: Microchip Technology Incorporated
    Inventor: Yaojian Leng
  • Patent number: 11721773
    Abstract: A semiconductor substrate includes excavations which form trenches sunk. A capacitive element includes: a first dielectric envelope conforming to sides and bottoms of the trenches; a first semiconductor layer conforming to a surface of the first dielectric envelope in the trenches; a second dielectric envelope conforming to a surface of the first semiconductor layer in the trenches; and a second semiconductor layer conforming to a surface of the second dielectric envelope in the trenches.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: August 8, 2023
    Assignee: STMicroelectronics (Rousset) SAS
    Inventors: Christian Rivero, Brice Arrazat, Julien Delalleau, Joel Metz
  • Patent number: 11723212
    Abstract: In some embodiments, the present disclosure relates to an integrated chip that includes one or more interconnect dielectric layers arranged over a substrate. A bottom electrode is disposed over a conductive structure and extends through the one or more interconnect dielectric layers. A top electrode is disposed over the bottom electrode. A ferroelectric layer is disposed between and contacts the bottom electrode and the top electrode. The ferroelectric layer includes a first lower horizontal portion, a first upper horizontal portion arranged above the first lower horizontal portion, and a first sidewall portion and coupling the first lower horizontal portion to the first upper horizontal portion.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: August 8, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hai-Dang Trinh, Yi Yang Wei, Bi-Shen Lee, Fa-Shen Jiang, Hsun-Chung Kuang, Cheng-Yuan Tsai
  • Patent number: 11721550
    Abstract: A method for depositing III-V alloys on substrates and compositions therefrom. A first layer comprises a Group III element. A second layer comprises a silica. A substrate has a surface. The second layer is deposited onto a first layer. The depositing is performed by a sol-gel method. The second layer is exposed to a precursor that comprises a Group V element. At least one of the precursor or the Group V element diffuse through the silica. The first layer is transformed into a solid layer comprising a III-V alloy, wherein at least a portion of the first layer to a liquid. The silica retains the liquified first layer, enabling at least one of the precursor or the Group V element to diffuse into the liquid, resulting in the forming of the III-V alloy.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: August 8, 2023
    Assignee: United States Department of Energy
    Inventors: Emily Lowell Warren, Jeramy David Zimmerman, Olivia Dean Schneble
  • Patent number: 11711942
    Abstract: A display device may include a first electrode, a pixel defining layer disposed on the first electrode, the pixel defining layer having a pixel opening that exposes the first electrode, an emission layer disposed in the pixel opening and on the first electrode, a second electrode disposed on the emission layer, a first refractive layer disposed on the second electrode and being an organic refractive layer, a second refractive layer disposed on the first refractive layer and being an organic refractive layer, the second refractive layer having a first opening that overlaps the pixel opening, and a third refractive layer disposed on the second refractive layer, the third refractive layer having a second refractive index greater than a first refractive index of the second refractive layer.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: July 25, 2023
    Assignee: Samsung Display Co., Ltd.
    Inventors: Gwangmin Cha, Woong Sik Kim, Jin-Su Byun, Sanghyun Lee
  • Patent number: 11710639
    Abstract: A method of manufacturing a semiconductor device includes forming a stack in which first material layers and second material layers are alternately stacked, forming a channel structure passing through the stack, forming openings by removing the first material layers, forming an amorphous blocking layer in the openings, and performing a first heat treatment process to supply deuterium through the openings and substitute hydrogen in the channel structure with the deuterium.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: July 25, 2023
    Assignee: SK hynix Inc.
    Inventors: Dae Hee Han, Sung Soon Kim
  • Patent number: 11706930
    Abstract: A semiconductor device includes a bottom electrode, a top electrode, a sidewall spacer, and a data storage element. The sidewall spacer is disposed aside the top electrode. The data storage element is located between the bottom electrode and the top electrode, and includes a ferroelectric material. The data storage element has a peripheral region which is disposed beneath the sidewall spacer and which has at least 60% of ferroelectric phase. A method for manufacturing the semiconductor device and a method for transforming a non-ferroelectric phase of a ferroelectric material to a ferroelectric phase are also disclosed.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: July 18, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzu-Yu Chen, Sheng-Hung Shih, Fu-Chen Chang, Kuo-Chi Tu, Wen-Ting Chu
  • Patent number: 11696438
    Abstract: An EEPROM memory integrated circuit includes memory cells arranged in a memory plane. Each memory cell includes an access transistor in series with a state transistor. Each access transistor is coupled, via its source region, to the corresponding source line and each state transistor is coupled, via its drain region, to the corresponding bit line. The floating gate of each state transistor rests on a dielectric layer having a first part with a first thickness, and a second part with a second thickness that is less than the first thickness. The second part is located on the source side of the state transistor.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: July 4, 2023
    Assignee: STMicroelectronics (Rousset) SAS
    Inventor: François Tailliet
  • Patent number: 11696448
    Abstract: A device includes a dielectric layer, a conductive layer, electrode layers and an oxide semiconductor layer. The dielectric layer has a first surface and a second surface opposite to the first surface. The conductive layer is disposed on the first surface of the dielectric layer. The electrode layers are disposed on the second surface of the dielectric layer. The oxide semiconductor layer is disposed in between the second surface of the dielectric layer and the electrode layers, wherein the oxide semiconductor layer comprises a material represented by formula 1 (InxSnyTizMmOn). In formula 1, 0<x<1, 0?y<1, 0<z<1, 0<m<1, 0<n<1, and M represents at least one metal.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: July 4, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Chang Sun, Sheng-Chih Lai, TsuChing Yang, Yu-Wei Jiang, Kuo-Chang Chiang
  • Patent number: 11690220
    Abstract: A flash includes a substrate. Two gate structures are disposed on the substrate. Each of the gate structures includes a floating gate and a control gate. The control gate is disposed on the floating gate. An erase gate is disposed between the gate structures. Two word lines are respectively disposed at a side of each of the gate structures. A top surface of each of the word lines includes a first concave surface and a sharp angle. The sharp angle is closed to a sidewall of the word line which the sharp angle resided. The sidewall is away from each of the gate structures. The sharp angle connects to the first concave surface.
    Type: Grant
    Filed: July 12, 2022
    Date of Patent: June 27, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Xiaojuan Gao, Chi Ren
  • Patent number: 11690223
    Abstract: Provided are a three-dimensional (3D) memory device and a manufacturing method thereof. The 3D memory device includes a gate stacked structure, a channel layer, a charge storage structure, an electrode layer and a capacitor dielectric layer. The gate stacked structure is disposed on a substrate and includes a plurality of gate layers electrically insulated from each other. The gate stacked structure has at least one channel hole and at least one capacitor trench. The channel layer is disposed on the sidewall of the at least one channel hole. The charge storage structure is disposed between the channel layer and the sidewall of the at least one channel hole. The electrode layer is disposed on the sidewall of the at least one capacitor trench. The capacitor dielectric layer is disposed between the electrode layer and the sidewall of the at least one capacitor trench.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: June 27, 2023
    Assignee: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Chung Yi Lin, Chih-Hsiung Lee
  • Patent number: 11682731
    Abstract: Fin smoothing, and integrated circuit structures resulting therefrom, are described. For example, an integrated circuit structure includes a semiconductor fin having a protruding fin portion above an isolation structure, the protruding fin portion having substantially vertical sidewalls. The semiconductor fin further includes a sub-fin portion within an opening in the isolation structure, the sub-fin portion having a different semiconductor material than the protruding fin portion. The sub-fin portion has a width greater than or less than a width of the protruding portion where the sub-fin portion meets the protruding portion. A gate stack is over and conformal with the protruding fin portion of the semiconductor fin. A first source or drain region at a first side of the gate stack, and a second source or drain region at a second side of the gate stack opposite the first side of the gate stack.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: June 20, 2023
    Assignee: Intel Corporation
    Inventors: Cory Bomberger, Anand S. Murthy, Tahir Ghani, Anupama Bowonder
  • Patent number: 11682704
    Abstract: A method includes: forming a trench in a first major surface of a semiconductor substrate, the trench having a base and a side wall extending from the base to the first major surface; forming a first insulating layer on the trench base and side wall; forming a sacrificial layer on the first insulating layer on the trench side wall; forming a second insulation layer on the sacrificial layer; inserting conductive material into the trench that at least partially covers the second insulation layer; selectively removing portions of the second insulation layer uncovered by the conductive material; selectively removing the sacrificial layer to form a recess that is positioned adjacent the conductive material in the trench and that is bounded by the first insulation layer and the second insulating layer; and forming a third insulating layer in the trench that caps the recess to form an enclosed cavity in the trench.
    Type: Grant
    Filed: April 6, 2022
    Date of Patent: June 20, 2023
    Assignee: Infineon Technologies Austria AG
    Inventors: Sylvain Leomant, Georg Ehrentraut, Maximilian Roesch
  • Patent number: 11676818
    Abstract: A laser irradiation apparatus (1) according to an embodiment includes an optical-system module (20) configured to apply laser light (L1) to an object to be irradiated, a shield plate (51) in which a slit (54) is formed, through which the laser light (L1) passes, and a reflected-light receiving component (61) disposed between the optical-system module (20) and the shield plate (51), in which the reflected-light receiving component (61) is able to receive, out of the laser light (L1), reflected light (R1) reflected by the shield plate (51).
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: June 13, 2023
    Assignee: JSW AKTINA SYSTEM CO., LTD
    Inventors: Daisuke Ito, Tamotsu Odajima, Ryo Shimizu, Masashi Machida, Tatsuro Matsushima
  • Patent number: 11678484
    Abstract: Disposed are a semiconductor structure, a manufacturing method thereof and a flash memory. The semiconductor structure includes a substrate, first isolation structures, a gate structure and an oxide layer. The first isolation structures define a first active area in a peripheral region of the substrate. The oxide layer is disposed on the substrate in the first active area and covered by the first isolation structures. The oxide layer and the first isolation structures define an opening exposing the substrate. The gate structure is disposed on the substrate in the first active area and includes a gate dielectric layer disposed in the opening and a gate disposed on the gate dielectric layer. The oxide layer is located around the gate dielectric layer. The width of the bottom surface of the gate is less than that of the top surface of the first active area.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: June 13, 2023
    Assignee: Winbond Electronics Corp.
    Inventors: Yao-Ting Tsai, Hsiu-Han Liao, Che-Fu Chuang
  • Patent number: 11670702
    Abstract: Provided is a thin film transistor including a highly-textured dielectric layer, an active layer, a gate electrode and a source/drain electrode that are stacked on a base substrate. The source/drain electrode includes a source electrode and a drain electrode. The gate electrode and the active layer are insulated from each other. The source electrode and the drain electrode are electrically connected to the active layer. Constituent particles of the active layer are of monocrystalline silicon-like structures. According to the present disclosure, the highly-textured dielectric layer is adopted to replace an original buffer layer to induce the active layer to grow into a monocrystalline silicon-like structure, such that the performance of the thin film transistor is improved.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: June 6, 2023
    Assignees: BEIJING BOE DISPLAY TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Bingqiang Gui, Lianjie Qu, Yonglian Qi, Hebin Zhao, Yun Qiu
  • Patent number: 11670500
    Abstract: A method of descumming a dielectric layer is provided. In an embodiment the dielectric layer is deposited over a substrate, and a photoresist is applied, exposed, and developed after the photoresist has been applied. Once the pattern of the photoresist is transferred to the underlying dielectric layer, a descumming process is performed, wherein the descumming process utilizes a mixture of a carbon-containing precursor, a descumming precursor, and a carrier gas. The mixture is ignited into a treatment plasma, and the treatment plasma is applied to the dielectric layer in order to descum the dielectric layer.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: June 6, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wan-Yi Kao, Kuang-Yuan Hsu, Tze-Liang Lee