Patents Examined by Roy M. Punnoose
  • Patent number: 11181483
    Abstract: Systems and methods for illuminating and/or inspecting one or more features of a unit under test (UUT) are disclosed herein. A system configured in accordance with embodiments of the present technology can include, for example, a machine, one or more diffuser elements, and/or one or more light sources. The system can create and adjust brightfield illumination profiles (e.g., uniform, brightfield illumination profiles) on portions (e.g., on curved features) of the UUT by, for example, using the one or more light sources and/or the one or more diffuser elements to adjust diffuse and/or specular illumination projected onto the curved features of the UUT. In some embodiments, the system includes one or more darkfield light sources configured to project illumination onto second portions of the UUT to create a darkfield illumination profile. The system can capture data of the brightfield and/or darkfield illumination profiles and can thereby inspect portions of the UUT.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: November 23, 2021
    Assignee: Radiant Vision Systems, LLC
    Inventors: Mark Michniewicz, Andrew Blowers
  • Patent number: 11175221
    Abstract: Disclosed is an ellipsometer or scatterometer including a light source, a polarizer, an optical illumination system suitable for directing an incident polarized light beam towards a sample, a wavefront-division optical beam splitter arranged to receive a secondary light beam produced by reflection, transmission or diffraction, the wavefront-division optical beam splitter being oriented to form three collimated split beams, an optical polarization modification device and an optical polarization splitting device to form six angularly split beams, a detection system suitable for detecting the six split beams, and a processing system suitable for deducing therefrom an ellipsometric or scatterometric measurement.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: November 16, 2021
    Assignee: HORIBA FRANCE SAS
    Inventors: Olivier Acher, Alexander Podzorov, Thanh-Liem Nguyen, Brice Villier, Géraldine Melizzi, Jean-Paul Gaston
  • Patent number: 11175220
    Abstract: A surface defect measuring apparatus and method by microscopic scattering polarization imaging is provided. The apparatus mainly comprises a laser, a first converging lens, a rotary diffuser, a second converging lens, a diaphragm, a third converging lens, a pinhole, a fourth converging lens, a polarizer, a half-wave plate, a polarizing beam splitter, an X-Y translation stage, a sample, a microscope lens, a quarter-wave plate, a micro-polarizer array, a camera and a computer. The micro-polarizer array is adopted to realize real-time microscopic scattering polarization imaging of the surface defects; a polarization-degree image is calculated to improve the sensitivity for detecting the surface defects of the ultra-smooth element, and the effective detection of the surface defects of a high-reflective coating element is also realized, and the requirement for rapid detection of the surface defects of a meter-scale large-aperture ultra-smooth element can be met.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: November 16, 2021
    Assignee: Shanghai Institute of Optics And Fine Mechanics, Chinese Academy of Sciences
    Inventors: Jianda Shao, Shijie Liu, Kaizao Ni, Shenghao Wang, You Zhou, Weiwei Wang, Tianzhu Xu, Qi Lu
  • Patent number: 11169089
    Abstract: A measurement chip including a prism, a metal film, and a capturing body is prepared. In a state in which a specimen is present on the metal film, scattered light obtained when first light which passes through the metal film and the specimen is scattered in the specimen when the first light is applied to the metal film from a prism side at a first incident angle smaller than a critical angle is detected. In a state in which a substance to be measured is captured by the capturing body and the specimen is not present on the metal film, a signal indicating an amount of the substance to be measured generated in the measurement chip when second light is applied to the metal film at a second incident angle not smaller than the critical angle from the prism side is detected. On the basis of a hematocrit value of the specimen determined from a light amount of the scattered light, a measurement value indicating the amount of the substance to be measured determined from the signal is corrected.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: November 9, 2021
    Assignee: KONICA MINOLTA, INC.
    Inventors: Tetsuya Noda, Fumio Nagai, Youichi Aoki, Makiko Otani
  • Patent number: 11169069
    Abstract: A particle detecting module is provided. The particle detecting module includes a base, a piezoelectric actuator, a driving circuit board, a laser component, a particulate sensor and an outer cover. A gas-guiding-component loading regain and a laser loading region are separated by the base. By the design of the gas flowing path, the driving circuit board covering the bottom surface of the base, and the outer cover covering the surfaces of the base, an inlet path is defined by the gas inlet groove of the base, and an outlet path is defined by a gas outlet groove of the base. Consequently, the thickness of the particle detecting module is drastically reduced.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: November 9, 2021
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Ching-Sung Lin, Chin-Chuan Wu, Chih-Kai Chen, Yung-Lung Han, Chi-Feng Huang, Chang-Yen Tsai
  • Patent number: 11169311
    Abstract: The present disclosure provides an optical component, which may be a metasurface grating, including (a) a substrate; and (b) an array of subwavelength-spaced phase-shifting elements, which are tessellated on the substrate to produce, when illuminated with a polarized incident light, a diffracted light beam with a distinct polarization state for each of a finite number of diffraction orders, wherein the finite number is 2 or more.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: November 9, 2021
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Noah A. Rubin, Federico Capasso
  • Patent number: 11162976
    Abstract: The invention is directed to an arrangement for detecting the intensity distribution of components of the electromagnetic field in beams of radiation. The object of the invention is met, according to the invention, in that a high-resolution two-dimensional intensity sensor array and a field vector detector array comprising different regions with individual detector structures for two transverse and longitudinal field vector components Ex, Ey, Ez are combined, wherein the detector structures are formed as nanostructures, metallic jacket-shaped tips with different apices, for utilization of localized plasmon resonance (LPR) of the individual detector structures and localized surface plasmons (LSP) excited through LPR for a polarization selection of the field distribution according to field vector components Ex, Ey, Ez and transmission thereof to associated sensor elements by means of surface plasmon polaritons (SPP) and wave guiding (WGM).
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: November 2, 2021
    Inventor: Norik Janunts
  • Patent number: 11162782
    Abstract: Example embodiments add an optical amplifier to an multi-channel, continuously swept OFDR measurement system, adjust amplified swept laser output power between rising and falling laser sweeps, and/or utilize portions of a laser sweep in which OFDR measurements are not typically performed to enhance the integrity of the OFDR measurement system, improve the performance and quality of OFDR measurements, and perform additional measurements and tests.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: November 2, 2021
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Kevin M. Marsden, Mark E. Froggatt, Matthew S. Wolfe
  • Patent number: 11156540
    Abstract: A device is disclosed for determining characteristic parameters of the dimensions of nanoparticles in suspension in a liquid. The device emits an incident light beam that is linearly polarized along a polarization axis; a detecting unit comprising a measurement arm that is rotatable with respect to an axis of rotation, the detecting unit comprising first and second detection channels that are separated by a polarization-splitting element arranged in the measurement arm; a fixed sample holder receives a container of cylindrical symmetry of the sample, an axis of symmetry of the container being coincident with the axis of rotation of the measurement arm; and a control unit. The polarization-splitting element of the measurement arm is configured to simultaneously send, over each of the first and second detection channels, respectively, a first and second polarized component of the beam scattered by the sample.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: October 26, 2021
    Assignees: Cordouan Technologies, Centre National de la Recherche Scientifique, Universite De Bordeaux, Institut Polytechnique De Bordeaux
    Inventors: Florian Aubrit, David Jacob, Olivier Sandre
  • Patent number: 11150195
    Abstract: Defects are detected using data acquired from an interference channel and a polarization modification channel in an interferometer. The interference objective splits a polarized illumination beam into a reference illumination that is reflected by a reference surface without modification to the polarization, and a sample beam that is reflected by a sample surface, that may modify the polarization. Light from the sample beam with no change in polarization is combined with the reference illumination and directed to the interference channel, which may measure the reflectivity and/or topography of the sample. Light from the sample beam with modified polarization is directed to the polarization modification channel. The intensity of the light detected at the polarization modification channel may be used, along with the reflectivity and topography data to identify defects or other characteristics of the sample.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: October 19, 2021
    Assignee: Onto Innovation Inc.
    Inventor: Nigel P. Smith
  • Patent number: 11150175
    Abstract: Methods for determining a radius of gyration of a particle in solution using a light scattering detector are provided. The method may include passing the solution through a flowpath in a sample cell, determining respective angular normalization factors for first and second angles of the detector, obtaining a first scattering intensity of the particle in solution at the first angle, obtaining a second scattering intensity of the particle in solution at the second angle, obtaining a 10° scattering intensity of the particle in solution at an angle of about 10°, determining a first particle scattering factor, determining a second particle scattering factor, plotting an angular dissymmetry plot, fitting a line to the angular dissymmetry plot, determining a slope of the line at a selected location on the line, determining the radius of gyration of the particle in solution from the slope of the line, and outputting the radius of gyration.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: October 19, 2021
    Assignee: M & J Scientific, LLC
    Inventors: Max Haney, Michael P. Murphy
  • Patent number: 11126015
    Abstract: A method for determining a parameter of an optical equipment including an optical equipment positioning step, during which an optical equipment comprising a pair of optical lenses mounted on a spectacle frame is positioned in a first position, a portable electronic device positioning step, during which a portable electronic device comprising an image acquisition module is positioned in a second position determined and/or known relatively to the first position so as to acquire an image of a distant element seen through at least part of the optical lenses of the optical equipment in the first position, a parameter determining step, during which at least one optical parameter of the optical equipment is determined based on the image of a distant element seen through at least part of the optical lenses of the optical equipment in the first position.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: September 21, 2021
    Assignee: Essilor International
    Inventors: Stephane Gueu, Jean Carrier
  • Patent number: 11105728
    Abstract: In one aspect, a method of sorting cells in a flow cytometry system is disclosed, which includes illuminating a cell with radiation having at least two optical frequencies shifted from one another by a radiofrequency to elicit fluorescent radiation from the cell, detecting the fluorescent radiation to generate temporal fluorescence data, and processing the temporal fluorescence data to arrive at a sorting decision regarding the cell without generating an image (i.e., a pixel-by-pixel image) of the cell based on the fluorescence data. In some cases, the sorting decision can be made with a latency less than about 100 microseconds. In some embodiments, the above method of sorting cells can have a sub-cellular resolution. In some embodiments, a single radiofrequency shift is employed to separate the optical frequencies while in other such embodiments a plurality of different radiofrequency shifts are employed.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: August 31, 2021
    Assignee: BECTON, DICKINSON AND COMPANY
    Inventors: Eric D. Diebold, Keegan Owsley, Jonathan Lin
  • Patent number: 11105709
    Abstract: A method for testing a display module may include providing light to the display module, obtaining an image of the display module, measuring a first center of a hole in the display module, measuring a first distance from the first center to an edge of the hole, measuring a second center of a closed line formed by a signal line of the display module, measuring a second distance from the second center to the signal line, calculating a third distance between the first center and the second center, and comparing the second distance with a sum of the first distance and the third distance.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: August 31, 2021
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jinhyeong Kim, Sanghoon Lim, Youngjin Oh, KuHyun Kang, Sungjin Jang
  • Patent number: 11105616
    Abstract: An apparatus is described for measuring surface topography of a patient's teeth. The apparatus may include an optical probe, a light source configured to generate incident light, and focusing optics configured to focus the incident light to a focal plane external to the optical probe, wherein the focal plane is a diagonal focal plane that is non-orthogonal to a direction of propagation of the incident light. The apparatus may further include a light sensor configured to measure a characteristic of returned light generated by illuminating the patient's teeth with the incident light, and a processing unit operable to determine the surface topography of the patient's teeth based on the measured characteristic of the returned light.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: August 31, 2021
    Assignee: Align Technology, Inc.
    Inventors: Erez Lampert, Adi Levin, Tal Verker
  • Patent number: 11099135
    Abstract: Systems and methods are disclosed relating to composite photonic materials used to design structures and detecting material deformation for the purpose of monitoring structural health of physical structures. According to one aspect, a composite structure is provided that includes a base material, an optical diffraction grating and one or more fluorophore materials constructed such that localized perturbations create a measureable change in the structure's diffraction pattern. An inspection device is also provided that is configured to detect perturbations in the composite structure. The inspection device is configured to emit an inspecting radiation into the structure and capture the refracted radiation and measure the change in the diffraction pattern and quantify the perturbation based on the wavelength and the angular information for the diffracted radiation.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: August 24, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Enrico Bovero, Vincent Brian Cunningham, Ilham Mokhtari, Aziz Fihri, Remi Mahfouz
  • Patent number: 11099118
    Abstract: A device for sorting biological entities is disclosed. The device comprises a channel to canalize the biological entities and a selector having slots to accommodate said entities. Means for detecting and analysing an optical parameter of the biological entities is coupled with the selector. The selector can switch from a rest position to a sorting position, or at least two sorting positions, based on the detected and analysed optical parameter, so that biological entities can be sorted on the basis of their optical properties. The device is particularly intended for sorting egg cells, zygotes, embryos, or larvae of an insect, an amphibian or a fish such as Xenopus laevis, C. elegans or zebfrafish Danio rerio.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: August 24, 2021
    Assignee: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)
    Inventors: Frank Bonnet, Norbert Crot, Francesco Mondada
  • Patent number: 11092543
    Abstract: A glucose sensor comprising an optical energy source having an emitter with an emission pattern; a first polarizer intersecting the emission pattern; a second polarizer spaced a distance from the first polarizer and intersecting the emission pattern, the second polarizer rotated relative to the first polarizer by a first rotational amount ?; a first optical detector intersecting the emission pattern; a second optical detector positioned proximal to the second polarizer, the first polarizer and the second polarizer being positioned between the optical energy source and the second optical detector, the second optical detector intersecting the emission pattern; a compensating circuit coupled to the second optical detector; and a subtractor circuit coupled to the compensating circuit and the first optical detector.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: August 17, 2021
    Assignee: K Sciences GP, LLC
    Inventor: Valentin Korman
  • Patent number: 11092533
    Abstract: The present invention relates to a method for measuring undissolved material in a polymer solution used in the production of electrode slurry using a surface light source. The method for measuring undissolved material in a polymer solution of the present invention comprises: a solution application step of applying a polymer solution on a transparent plate; a light supplying step of supplying light with a light source to the polymer solution applied on the transparent plate; a photographing step of photographing a shape of the light transmitted through the polymer solution applied on the transparent plate; and a measuring step of confirming the number and particle size of the undissolved material in the polymer solution with a photographed image.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: August 17, 2021
    Assignee: LG Chem, Ltd.
    Inventors: Hwi Soo Yang, Ga Hyun Lim, Sang Hoon Choy
  • Patent number: 11092540
    Abstract: An optical device includes a carrier, a light source, a die, a light guiding structure and a reflecting structure. The carrier has a surface. The light source is disposed on the surface and configured to emit a light beam. The die is disposed on the surface and configured to sense the light beam. The light guiding structure is disposed on the surface and configured to guide the light beam. The light guiding structure includes a light receiving surface facing the light source and a light exit surface. The reflecting structure is disposed over the die. The reflecting structure includes a light reflecting surface facing the light exit surface of the light guide structure and is configured to reflect the light beam exiting from the light exit surface to the die. The light reflecting surface and the light exit surface are separated from each other and define a vent hole.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: August 17, 2021
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventor: Shih-Tien Feng