Patents Examined by Roy M. Punnoose
  • Patent number: 11346769
    Abstract: An ellipsometer uses a broadband light source and a Fresnel cone to produce a simultaneous broadband polarization state generator with no moving parts. The detector of the ellipsometer includes a diffractive element to spatially separate the wavelengths of the light from the sample. The wavelengths may be spatially separated sufficiently that there is no overlap of bands of wavelengths when imaged by a two-dimensional sensor or may be temporally separated. Additionally, the detector separates and simultaneously analyzes the polarizations states of the light from the sample so there is no overlap of polarization states when imaged by a two-dimensional sensor and no moving parts are used. The resulting image with separated wavelengths and polarization states may be used to determine at least a partial Mueller matrix for the sample.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: May 31, 2022
    Assignee: Onto Innovation Inc.
    Inventor: Alexander George Boosalis
  • Patent number: 11348221
    Abstract: A wafer testing method adapted to test a thin wafer. The thin wafer is combined with a vacuum-release substrate to form a wafer-assembly, and the wafer-assembly is placed in a wafer cassette. The vacuum-release substrate is attached to a front surface of the wafer with an attaching force which is sensitive to air pressure. The method includes the following steps. First, taking out the wafer-assembly from the wafer cassette, then transferring the wafer-assembly to a warpage-detection-device and placing the wafer-assembly on a first stage of the warpage-detection-device. Then, detecting warpage of the wafer. If the warpage of the wafer is less than a warpage threshold, the wafer-assembly is taken out from the first stage, and the wafer-assembly is turned over to place the wafer-assembly on a second stage. Then, applying negative pressure to the vacuum-release substrate to eliminate the attaching force. Then, removing the vacuum-release substrate.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: May 31, 2022
    Assignee: MPI CORPORATION
    Inventors: Chien-Yu Chen, Han-Yu Chuang, Po-Han Peng
  • Patent number: 11346763
    Abstract: The disclosure discloses an apparatus and a method for microbial cell counting, and belongs to the field of cell counting. In the present application, by converting a traditional automated intermittent counting process into a continuous counting process, the cell sap fixed in a blood cell plate in a traditional counter becomes the cell sap flowing in a microchannel, so as to prolong the cell detection time and distance. The size of the microchannel is slightly greater than the diameter of microbial cells, so as to ensure that the cells flow through the cross section of the microchannel one by one. At the same time, since the diameter of the counterbores communicated by the microchannel is slightly greater than the width of the microchannel, the flow rate of the cell sap slows down when the cell sap flows to the counterbores.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: May 31, 2022
    Assignee: JIANGNAN UNIVERSITY
    Inventors: Gongxin Li, Fei Liu, Xiaoli Luan, Zhiguo Wang, Jun Chen
  • Patent number: 11346790
    Abstract: The light from an optical metrology device is focused into a measurement spot on a sample using a focusing system. The focusing system uses an image of the light reflected from the measurement spot to determine a best focal position at a desired position of the sample. The focusing system selects a characteristic of reflected light, such as polarization state or wavelengths, to use for focusing. The characteristic of the reflected light that is selected for use in determining focal position is affected different by different portions of the sample. For example, light reflected from a top surface of a sample may have a different characteristic than light reflected by an underlying layer. The selected characteristic of the reflected light is used by the focusing system to focus the measurement spot at the top surface or an underlying layer of the sample.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: May 31, 2022
    Assignee: Onto Innovation Inc.
    Inventors: Amit Shachaf, Daniel Thompson, John F. Lesoine
  • Patent number: 11328411
    Abstract: Systems and methods for detecting defects on a reticle are provided. One system includes computer subsystem(s) configured for performing at least one repeater defect detection step in front-end processing during an inspection process performed on a wafer having features printed in a lithography process using a reticle. The at least one repeater defect detection step performed in the front-end processing includes identifying any defects detected at corresponding locations in two or more test images by double detection and any defects detected by stacked defect detection as first repeater defect candidates. One or more additional repeater defect detections may be performed on the first repeater defect candidates to generate final repeater defect candidates and identify defects on the reticle from the final repeater defect candidates.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: May 10, 2022
    Assignee: KLA Corp.
    Inventors: Hong Chen, Kenong Wu, Xiaochun Li, James A. Smith, Eugene Shifrin, Qing Luo, Michael Cook, Wei Si, Leon Yu, Bjorn Brauer, Nurmohammed Patwary, Ramon Ynzunza, Neil Troy
  • Patent number: 11328380
    Abstract: The present disclosure generally relates to machine vision systems, illumination sources for use in machine vision systems, and components for use in the illumination sources. More specifically, the present disclosure relates to machine vision systems incorporating multi-function illumination sources, multi-function illumination sources, and components for use in multi-function illumination sources.
    Type: Grant
    Filed: October 26, 2019
    Date of Patent: May 10, 2022
    Inventors: Gilbert Pinter, Edward Brandel, Jeremy Brodersen
  • Patent number: 11326999
    Abstract: A device and a method for detecting fluid particle characteristics. The device comprises a fluid composition sensor configured to receive a volume of fluid and a controller. The fluid composition sensor comprises a collection media configured to receive one or more particles of a plurality of particles within the fluid; and an imaging device configured to capture an image of one or more particles of the plurality of particles received by the collection media. The controller is configured to determine a particle impaction depth of each of the one or more particles of the plurality of particles within the collection media; and, based at least in part on the particle impaction depth of each of the one or more particles of the plurality of particles, determine a particulate matter mass concentration within the volume of fluid.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: May 10, 2022
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Andy Walker Brown, Adam D. McBrady, Stephan Michael Bork
  • Patent number: 11320367
    Abstract: A testing system includes a production-type laser having optical modes of a production laser that interfaces with an optical path of a heat-assisted magnetic recording (HAMR) slider. A far-field light illumination path delivers excitation light from the production-type laser to the optical path of the HAMR slider, the excitation light being emitted from an air bearing surface (ABS) of the HAMR slider. Optics receive the emitted light from the ABS and distribute the emitted light to one or more sensors. The system determines, based on signals received from the one or more sensors, a depolarization of the emitted light and a coupling efficiency of the HAMR slider. The system may also measure light reflecting out of the optical path and Fourier transform these measurements to determine locations of reflections within the optical path.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: May 3, 2022
    Assignee: Seagate Technology LLC
    Inventors: Raghu Ambekar Ramachandra Rao, Aaron Edward Patz, Tae-Woo Lee
  • Patent number: 11313779
    Abstract: A debris detection system includes a chamber configured to permit particles to pass through the chamber; an optical fiber or fiber optic cable providing a light path; a collimator configured to channel light from the light path into the chamber; and a reflector configured to reflect light back to the collimator for signal detection. In embodiments, the reflector may include a mirror. Methods for detecting particles and information and/or parameters associated with particles, including that associated with reflected light, are disclosed.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: April 26, 2022
    Assignee: Eaton Intelligent Power Limited
    Inventors: Gregory Kopansky, George P. Birch, Xin Pu, John Zielinski
  • Patent number: 11313805
    Abstract: A method for detecting optical film defects based on differential interference, comprising: an incident light is adjusted into a planar light wave, and the surface of an optical film to be detected is adjusted to be perpendicular to the planar light wave; the planar light wave sequentially passes through a diaphragm, the optical film, a first collimating lens and a lenticular lens, and then form two parallel outgoing beams by differential interference; the two parallel outgoing beams pass through a second collimating lens to form a differential interference image on a photodetector; and the differential interference image is analyzed to detect both superficial and internal defects of the optical film.
    Type: Grant
    Filed: May 27, 2017
    Date of Patent: April 26, 2022
    Assignee: HUAIYIN NORMAL UNIVERSITY
    Inventors: Feng Lei, Xintian Bian
  • Patent number: 11313780
    Abstract: Methods of analyzing and filtering light scattering data from a sample potentially containing a non-target compound, for example a contaminant. The presence of contaminants result in outliers in the scattering intensity data that increase both symmetry and width of photon counts obtained via analysis. After identification, various outliers are discarded to account for the non-target compounds and thereafter the remaining light scattering data is analyzed. Preferably, analyzing the light scattering data or photon counts involves determining a level to discard an outlier. In particular, the method includes the steps of identifying and quantifying the mode of photon count distribution and using the peak of the mode of distribution to eliminate outliers.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: April 26, 2022
    Assignee: ADOLPHE MERKLE INSTITUTE, UNIVERSITY OF FRIBOURG
    Inventor: Sandor Balog
  • Patent number: 11307132
    Abstract: Disclosed is an integrated biocontainment cell sorter that isolates portions of the cell sorter that can create contamination. Two containment systems are utilized. A main cabinet containment system contains input samples. An aerosol management containment area includes a nozzle chamber with a nozzle and a sort chamber with sort plates and collection media that collect a droplet stream from the nozzle. The main cabinet is maintained at a first low pressure and clean air is recirculated under a positive pressure. The aerosol management containment area is kept at a second low pressure, which is lower than the first pressure, so that contamination does not leak from the aerosol management containment area into the main cabinet containment area. A sliding sash window is located over an access opening in the main cabinet and can be moved to access different portions of the main cabinet without changing the substantially constant first low pressure in the main cabinet.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: April 19, 2022
    Assignee: Life Technologies Corporation
    Inventors: Lincoln T. Gulley, Daniel N. Fox, Angela L. Goldfain
  • Patent number: 11300495
    Abstract: The disclosure relates to a flow cytometer arrangement, in which a sample is mixed with a colorant by means of two pumps and the mixture is introduced together with a sheath flow into a flow cell.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: April 12, 2022
    Inventor: Martin Kuhn
  • Patent number: 11300452
    Abstract: A new spectral measurement technique is provided which enables measurement even if the light to be measured exists for a very short period. In one embodiment, a broadband pulsed light wave whose wavelength shifts temporally and continuously in a pulse interferes with a light wave to be measured. The intensity at each wavelength of the light wave to be measured is obtained using a Fourier transform of the output signal from a detector that has detected the intensity of the wave resulting from the interference. A laser beam from a laser source is converted to a supercontinuum wave by a nonlinear optical element, and a pulse extension element extends pulses of the supercontinuum wave, thus generating the broadband pulsed light wave.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: April 12, 2022
    Assignee: Ushio Denki Kabushiki Kaisha
    Inventors: Aya Ota, Toshio Yokota
  • Patent number: 11300599
    Abstract: In a general aspect, a vapor cell includes a body defined by a stack of layers bonded to each other. The stack of layers defines an array of cavities that includes first and second subsets of cavities. The first subset of cavities extends through intermediate layers of the stack of layers and the second subset of cavities extends entirely through the stack of layers. The vapor cell includes a vapor or a source of the vapor disposed in each of the first subset of cavities. The stack of layers includes a first end layer disposed at a first end of the body and a second end layer disposed at a second, opposite end of the body. The intermediate layers are positioned between the first and second end layers.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: April 12, 2022
    Assignee: Quantum Valley Ideas Laboratories
    Inventors: Hadi Amarloo, Jennifer Ann Joe Erskine, Jaime Ramirez-Serrano, Somayeh M. A. Mirzaee, James P. Shaffer
  • Patent number: 11300560
    Abstract: A system for sensing concentration is provided. A light source emits at least a light ray which passes through a first polarization state changing module and is directed to a biological tissue to generate a response light ray. The response light ray is received by a sensor after passing through a second polarization state changing module. A calculation circuit calculates a Muller matrix corresponding to the biological tissue according to the response light ray, and calculates a depolarization index of the biological tissue according to the Muller matrix, and calculates an optical path length according to the depolarization index, and calculates the concentration of matter of the biological tissue according to the optical path length.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: April 12, 2022
    Assignee: National Cheng Kung University
    Inventors: Yu-Lung Lo, Chieh-Chen Tsai
  • Patent number: 11293852
    Abstract: Systems and methods for modeling and detecting white blood cell population dynamic for diagnosis and treatment, e.g., of acute coronary syndrome or leukocytosis.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: April 5, 2022
    Assignee: The General Hospital Corporation
    Inventors: John M. Higgins, Anwesha Chaudhury
  • Patent number: 11285473
    Abstract: Sample preparation systems and methods are described having pump control, valve configurations, and control logic that facilitate automatic, inline preparation dilutions of a sample according to at least two dilution operating modes. A system embodiment includes, but is not limited to a first pump configured to drive a carrier fluid; a second pump configured to drive a diluent; and a plurality of selection valves fluidically coupled with the first pump and the second pump, the plurality of selection valves being configured to direct fluid flows from the first pump and the second pump according to at least two modes of operation to provide a single-stage sample dilution according to a first operating mode and to provide a dual-stage sample dilution according to a second operating mode.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: March 29, 2022
    Assignee: ELEMENTAL SCIENTIFIC, INC.
    Inventors: Daniel R. Wiederin, Austin Schultz
  • Patent number: 11284785
    Abstract: Controlling integral energy of a light pulse in a hyperspectral, fluorescence, and laser mapping imaging system is disclosed. A system includes an emitter for emitting pulses of electromagnetic radiation and an image sensor comprising a pixel array for sensing reflected electromagnetic radiation. The system includes an electromagnetic sensor for sensing energy emitted by the emitter. The system includes a controller configured to synchronize timing of the emitter and the image sensor. The system is such that at least a portion of the pulses of electromagnetic radiation emitted by the emitter comprises one or more of a hyperspectral emission, a fluorescence emission, or a laser mapping pattern.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: March 29, 2022
    Inventors: Joshua D. Talbert, Donald M. Wichern
  • Patent number: 11282187
    Abstract: An inspection system for inspecting a target includes a first lighting device configured to irradiate light onto the target from a given direction; a second lighting device, provided between the target and the first lighting device, configured to irradiate light onto the target from an oblique direction with respect to the given direction; an image capture device, provided at a position opposite to a position of the target with respect to the first lighting device and the second lighting device in the given direction; and circuitry configured to acquire a first inspection target image of the target, captured by the image capture device by irradiating the light from the first lighting device, and a second inspection target image of the target, captured by the image capture device by irradiating the light from the second lighting device, to be used for inspecting the target.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: March 22, 2022
    Assignee: RICOH COMPANY, LTD.
    Inventors: Fumihiro Nakashige, Takuji Kamada