Abstract: A semiconductor device inspection method including: depositing a dielectric material over a substrate to form an interconnect-level dielectric (ILD) layer; patterning the ILD layer to form via structures in the ILD layer; depositing an electrically conductive material to form an inspection layer on the ILD layer and in the via structures; imaging the inspection layer to generate image data; and detecting any defects in the via structures by analyzing the image data.
Type:
Grant
Filed:
August 26, 2021
Date of Patent:
September 19, 2023
Assignee:
Taiwan Semiconductor Manufacturing Company Limited
Abstract: A system for droplet measurement includes an inkjet head including a nozzle which discharges droplets, a substrate on which droplets discharged from the nozzle of the inkjet head are dripped, a first detector disposed below the substrate and including a first camera and a first focusing structure, and a second detector disposed below the substrate and including a second camera and a second focusing structure.
Abstract: Images of semiconductor wafers can be hashed to determine a fixed length hash string for each of the images. Pattern synonyms can be determined from the hash strings. The pattern synonyms can be grouped. A degree of similarity between images in the groups is adjustable via a hamming distance. This can be used for various applications, including determination of latent defects.
Abstract: Methods and systems for setting up inspection of a specimen are provided. One system includes one or more computer subsystems configured for acquiring a reference image for a specimen and modifying the reference image to fit the reference image to a design grid thereby generating a golden grid image. The one or more computer subsystems are also configured for storing the golden grid image for use in inspection of the specimen. The inspection includes aligning a test image of the specimen generated from output of an inspection subsystem to the golden grid image.
Type:
Grant
Filed:
February 2, 2021
Date of Patent:
September 5, 2023
Assignee:
KLA Corp.
Inventors:
Hong Chen, Bjorn Brauer, Abdurrahman Sezginer, Sangbong Park, Ge Cong, Xiaochun Li
Abstract: A system, method and corresponding software product are presented, the method comprising: providing a training data set comprising one or more spectrogram data pieces obtained from a plurality of individuals and respective data on a selected set of blood biomarkers of said individuals; selecting one or more groups of biomarkers selected from said selected set of biomarkers, wherein each group includes two or more (three or more) biomarkers; training one or more prediction models based on said training data, said one or more prediction model comprising one or more prediction routes for prediction of said one or more groups of biomarkers respectively. Accordingly, the prediction model comprises a selected number of prediction routes, each trained for predicting biomarkers concentrations of a respective groups of biomarkers.
Abstract: An image acquiring method, an image acquiring apparatus and a wafer inspection apparatus are disclosed. A line scan camera is disposed above a transfer path of a wafer to continuously acquire partial images having a predetermined size by imaging a scan area including a portion of the transfer path, and the partial images are stored in an image storage unit. A partial image including a predetermined feature point among the partial images is detected by an image analysis unit, and an image merging unit merges a predetermined number of partial images including the detected partial image to acquire an entire image of the wafer. An image inspection unit analyzes the entire image of the wafer to detect defects in the wafer.
Abstract: Example embodiments add an optical amplifier to an multi-channel, continuously swept OFDR measurement system, adjust amplified swept laser output power between rising and falling laser sweeps, and/or utilize portions of a laser sweep in which OFDR measurements are not typically performed to enhance the integrity of the OFDR measurement system, improve the performance and quality of OFDR measurements, and perform additional measurements and tests.
Type:
Grant
Filed:
September 27, 2021
Date of Patent:
August 22, 2023
Assignee:
Intuitive Surgical Operations, Inc.
Inventors:
Kevin M. Marsden, Mark E. Froggatt, Matthew S. Wolfe
Abstract: A polarization imaging image-pickup system includes an image-pickup unit array that includes a plurality of image-pickup units arranged two-dimensionally, wherein the image-pickup units each include: one wavefront control element that includes a plurality of microscopic structures; and a pixel array that is arranged so as to face the wavefront control element, and includes a plurality of pixels that are associated with the wavefront control element and are two-dimensionally arranged, and light from an imaging object is spatially separated by the one wavefront control element into first polarized light, and a second polarized light that is in a direction orthogonal to the first polarized light or has a rotation direction opposite to a rotation direction of the first polarized light, the first polarized light is collected at a first collection position on the pixel array, and the second polarized light is collected at a second collection position on the pixel array.
Type:
Grant
Filed:
September 17, 2019
Date of Patent:
August 22, 2023
Assignee:
NIPPON TELEGRAPH AND TELEPHONE CORPORATION
Abstract: The present invention belongs to the technical field of new energy detection, in particular to a material uniformity detection device and method. The purpose of the present invention is to provide a material uniformity detection device which can meet the requirement of detection of diversified materials such as biomass slurry aiming at the problem of difficulty in quantifying uniformity state of the biomass slurry. The sample pool is driven by the rotating lifting device for lifting and spiral motion, data collection is performed on the sample pool in the form of a certain path, and an image is established for the relationship between a large number of light intensity values of transmission light and heights measured for multiple times to respectively display the uniformity of horizontal layering and uniformity in the vertical direction, to judge the overall uniformity of the material samples.
Abstract: An electronic device comprising a deformable object which is at least partially filled with a light-absorbing material, one or more light sources configured to illuminate the inside of the deformable object, an imaging unit configured to capture respective images of the light sources, and circuitry configured to reconstruct the shape of the deformable object based on the captured images of the light sources.
Abstract: A specimen analysis system includes: a measurement data acquisition unit that acquires measurement data of particles obtained from a flow cytometer measuring the particles contained in a measurement specimen prepared by adding a reagent to a sample; an output mode information acquisition unit that acquires output mode information indicating an output form of the measurement data; and an output unit configured to output the measurement data in the output form in accordance with the output mode information.
Abstract: A method including: determining recipe consistencies between one substrate measurement recipe of a plurality of substrate measurement recipes and each other substrate measurement recipe of the plurality of substrate measurement recipes; calculating a function of the recipe consistencies; eliminating the one substrate measurement recipe from the plurality of substrate measurement recipes if the function meets a criterion; and reiterating the determining, calculating and eliminating until a termination condition is met. Also disclosed herein is a substrate measurement apparatus, including a storage configured to store a plurality of substrate measurement recipes, and a processor configured to select one or more substrate measurement recipes from the plurality of substrate measurement recipes based on recipe consistencies among the plurality of substrate measurement recipes.
Type:
Grant
Filed:
December 17, 2020
Date of Patent:
July 18, 2023
Assignee:
ASML NETHERLANDS B.V.
Inventors:
Arie Jeffrey Den Boef, Timothy Dugan Davis, Peter David Engblom, Kaustuve Bhattacharyya
Abstract: Techniques in connection with the use of a multi-pixel polarization filter in the light-microscopic examination of a sample object are described. In this way e.g. a particle analysis can be carried out, e.g. in particular for determining the technical cleanness of a surface of the sample object.
Type:
Grant
Filed:
January 26, 2021
Date of Patent:
July 4, 2023
Assignee:
Carl Zeiss Microscopy GmbH
Inventors:
Indrajati Nicole Kastanja, Markus Cappellaro, Achim Schwarz
Abstract: To provide a three-dimensional survey apparatus, a three-dimensional survey method, and a three-dimensional survey program which are capable of suppressing an occurrence of a data-deficient part. A three-dimensional survey apparatus includes a collimating ranging unit, a scanner unit, and a control calculation portion. If there is a data-deficient part where three-dimensional data is not acquired among a measurement object when the scanner unit acquires point cloud data, the control calculation portion executes control to replenish the three-dimensional data related to the data-deficient part having been acquired by the collimating ranging unit to the point cloud data having been acquired by the scanner unit.
Abstract: A scanning system is described herein which incorporates projecting a plurality of patterns onto an object of interest and capturing the reflected image. Each pattern is based at least in part on traversing a hypercube graph or a Fibonacci cube graph using a Hamiltonian path. The patterns are used to help define the three-dimensional shape of the underlying object of interest, while also providing more robust error-correcting properties. After the reflected image of the projected pattern is captured, the scanning system further processes and displays a three-dimensional model of the captured object of interest.
Abstract: Deformable sensors and methods for modifying membrane stiffness are provided. A deformable sensor may include a membrane coupled to a housing to form a sensor cavity. The deformable sensor may further include a rotational element having an adjustable vertical position and a modifiable rotation. The rotational element may be supported at a base of the sensor cavity. The rotational element may be configured to establish and withdraw contact with respect to the membrane to modify stiffness of the membrane. The rotational element may further be configured to modify stiffness of the membrane by withdrawing the rotational element from the membrane.
Abstract: A camera metrology apparatus including a base section, a drive section with independent drive axes, and an actuation platform having a camera mount, with a predetermined camera mount interface for a camera, and a camera stimulation source mount, with a predetermined stimulation source mount interface, and being coupled to one of the drive axes to generate relative motion between each interface effecting metrology measurement of the camera, wherein the actuation platform has a selectable configuration between different predetermined platform configurations, each with different predetermined mounting location characteristics changing a predetermined mounting location of the camera mount interface or stimulation source mount interface and effecting a different predetermined metrology measurement characteristic, and the camera mount and the camera stimulation source mount are arranged to define a repeatable relative position between the camera mount interface and stimulation source mount interface in each platfor
Abstract: A system and method of providing remote control of a scanner is provided. The system includes a laser scanner device rotatable around a first axis and that includes a mirror rotatable around a second axis. The system also includes a mobile computing device operably coupled for communication to the laser scanner. The mobile computing device includes a sensor to detect movement of the mobile computing device. The mobile computing device also includes one or more processors and computer instructions to perform a method that includes connecting to the laser scanner to transmit signals therebetween; detecting a motion of the mobile computing device; and causing the laser scanner to modify at least one of the first angle of rotation of the laser scanner about the first axis and the second angle of rotation of the mirror about the second axis in response to detecting motion of the mobile computing device.
Abstract: Aspects of the disclosure include methods for generating angularly deflected laser beams for irradiating a sample in a flow stream. Methods according to certain embodiments include generating a first set of angularly deflected laser beams and a second set of angularly deflected laser beams, propagating the first set of angularly deflected laser beams along a different optical path from the second set of angularly deflected laser beams, combining the first set of angularly deflected laser beams with the second set of angularly deflected laser beams and directing the combined sets of laser beams onto a sample in a flow stream and detecting light from the sample. Systems having a laser, an acousto-optic device and an optical adjustment component configured to generate a first set of angularly deflected laser beams and a second set of angularly deflected laser beams are also described.
Type:
Grant
Filed:
April 9, 2021
Date of Patent:
June 20, 2023
Assignee:
BECTON, DICKINSON AND COMPANY
Inventors:
Jizuo Zou, Jorge Manzarraga, Eric D. Diebold
Abstract: Method of and apparatus for performing cyclic flow cytometry analysis on a sample population of cellular entities including: causing each cellular entity to be labeled with an optical identifier; for each cellular entity, performing a first pass of flow cytometry measurement over a flow channel with respect to a first set of parameters, under conditions of determining an identification for the cellular entity for which values of the first set of parameters are being obtained, and storing the values of the first set in association with the identification; and performing a second pass of flow cytometry measurement over the flow channel with respect to a second set of parameters, under conditions of separately determining an identification for the cellular entity for which values of the second set of parameters are being obtained, and storing the values of the second set in association with the identification.