Patents Examined by Roy V. King
  • Patent number: 6120846
    Abstract: A method is described for the selective deposition of bismuth based ferroelectric films by selective chemical vapor deposition on a substrate. Selectivity in the deposition process is attained by selection of substrate-precursor combinations which assure high bismuth deposition efficiency in certain areas and low bismuth deposition efficiency in other areas in combination with specific process parameters.
    Type: Grant
    Filed: December 23, 1997
    Date of Patent: September 19, 2000
    Assignees: Advanced Technology Materials, Inc., Infineon Technologies Corporation
    Inventors: Frank Hintermaier, Bryan Hendrix, Jeff Roeder, Peter Van Buskirk, Thomas H. Baum
  • Patent number: 6122534
    Abstract: A process for increasing the resistivity of a HTS oxide composite sheath including heating a superconductive HTS oxide composite, the composite including a sheath including silver, in the presence of mercury at temperatures sufficient to form a silver--mercury alloy is provided together with a HTS oxide composite which includes a high temperature superconductor oxide core surrounded by a metallic sheath, the metallic sheath including silver and mercury.Also provided is a process for preparing a HTS oxide composite having an enhanced transport critical current density including placing the HTS oxide composite within a sealed, evacuated container, and, heating the HTS oxide composite for time and at temperatures sufficient for enhancement of transport critical current density in comparison to the transport critical current density of the HTS oxide composite prior to the heating.
    Type: Grant
    Filed: March 18, 1999
    Date of Patent: September 19, 2000
    Assignee: The Regents of the Univeristy of California
    Inventors: Gilbert N. Riley, Jr., James D. Cotton, Terry G. Holesinger
  • Patent number: 6121206
    Abstract: A novel ceramic substrate useful for the preparation of superconducting films, said substrate having the formula REBa.sub.2 MO.sub.6 where RE represents rare earth metals--Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and M represents metals Nb, Sb, Sn, Hf, Zr; and a process for the preparation of superconducting YBa.sub.2 Cu.sub.3 O.sub.7-.delta. thick films on new ceramic substrate.
    Type: Grant
    Filed: January 19, 2000
    Date of Patent: September 19, 2000
    Assignee: Council of Scientific & Industrial Research
    Inventors: Jacob Koshy, Jijimon Kumpukkattu Thomas, Jose Kurian, Yogendra Prasad Yadava, Alathoor Damodaran Damodaran
  • Patent number: 6119025
    Abstract: A method of producing ceramic superconducting materials such as YBa.sub.2 Cu.sub.3 O.sub.x includes blending together starting materials for the superconducting material. The blend of starting materials are formed into a layer and sintered at a temperature above the peritectic temperature for the superconducting material. Prior to sintering, the starting materials for the superconducting material may be unreacted. The starting materials may also be partially reacted prior to sintering by calcining for a period of time at a temperature which does not result in full reaction of the starting materials to the chemical composition of the desired superconducting material.
    Type: Grant
    Filed: August 4, 1998
    Date of Patent: September 12, 2000
    Assignee: Illinois Superconductor Corporation
    Inventors: Timothy W. Button, Neil McN Alford, Felicitas Wellhofer
  • Patent number: 6117243
    Abstract: A CVD device for coating the inside of a hollow body, comprising a coating chamber, a microwave plasma-igniting device, a gas-supply device and an optical detective device, wherein the plasma-igniting device and optical detective device are connected to a control and analysis unit, analyzing the time correlation of ignition pulses and light pulses, and the intensity of at least one emission line of the plasma.
    Type: Grant
    Filed: July 14, 1999
    Date of Patent: September 12, 2000
    Assignee: Schott Glaswerke
    Inventor: Marten Walther
  • Patent number: 6112697
    Abstract: Plasma enhanced chemical vapor deposition (PECVD) reactors and methods of effecting the same are described. In a preferred implementation, a PECVD reactor includes a processing chamber having a first electrode therewithin. A second electrode is disposed within the chamber and is configured for supporting at least one semiconductor workpiece for processing. A first RF power source delivers RF power of a first frequency to the first electrode. A second RF power source delivers RF power of a second frequency to the second electrode. Preferably the first and second frequencies are different from one another, and even more preferably, the first frequency is greater than the second frequency. The preferred reactor includes a thermocouple which provides temperature information relative to one of the electrodes.
    Type: Grant
    Filed: February 19, 1998
    Date of Patent: September 5, 2000
    Assignees: Micron Technology, Inc., Applied Materials, Inc.
    Inventors: Sujit Sharan, Gurtej S. Sandhu, Paul Smith
  • Patent number: 6113983
    Abstract: A new low temperature method for nanostructured metal and ceramic thin film growth by chemical vapor deposition (CVD) involves the use of a low pressure co-flow diffusion flame reactor to react alkali metal vapor and metal halide vapor to deposit metal, alloy and ceramic films. The reaction chemistry is described by the following general equation:(mn)Na+nMX.sub.m .fwdarw.(M).sub.n +(nm)NaXwhere Na is sodium, or another alkali metal (e.g., K, Rb, Cs), and MX.sub.m is a metal-halide (M is a metal or other element such as Si, B or C; X is a halogen atom, e.g., chlorine, fluorine or the like; and m and n are integers). This reaction chemistry is a viable technique for thin film growth. In one mode, using the precursors of sodium metal vapor, titanium tetrachloride (the limiting reagent), and either argon or nitrogen gases, titanium (Ti), titanium nitride (TiN), titanium dioxide (TiO.sub.2), and titanium silicide (TiSi, Ti.sub.5 Si.sub.3, TiSi.sub.2, Ti.sub.5 Si.sub.
    Type: Grant
    Filed: April 3, 1998
    Date of Patent: September 5, 2000
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Michael R. Zachariah, Jay H. Hendricks
  • Patent number: 6113993
    Abstract: The present invention is a method of coating a substrate with a calcium phosphate compound using plasma enhanced MOCVD. The substrate is a solid material that may be porous or non-porous, including but not limited to metal, ceramic, glass and combinations thereof. The coated substrate is preferably used as an implant, including but not limited to orthopaedic, dental and combinations thereof. Calcium phosphate compound includes but is not limited to tricalcium phosphate (TCP), hydroxyapatite (HA) and combinations thereof. TCP is preferred on a titanium implant when implant resorbability is desired. HA is preferred when the bone bonding of new bone tissue into the structure of the implant is desired. Either or both of TCP and/or HA coated implants may be placed into a solution with an agent selected from the group of protein, antibiotic, antimicrobial, growth factor and combinations thereof that can be adsorbed into the coating before implantation.
    Type: Grant
    Filed: October 28, 1998
    Date of Patent: September 5, 2000
    Assignee: Battelle Memorial Institute
    Inventors: Yufei Gao, Allison A. Campbell
  • Patent number: 6110541
    Abstract: The present invention relates to a CVD apparatus for highly textured diamond film formation and a method for forming a highly textured diamond film on the surface of a silicone substrate by generating a high density plasma so that each diamond film grain can have the same orientation as the substrate. The present inventors developed an improved chemical vapor deposition apparatus and a method for highly textured diamond film formation, on the ground that the nucleation density having a heteroepitaxy relation with a silicone substrate can be increased by modifying the substrate support and by generating a high density plasma right on the substrate while subjecting the whole substrate to the plasma. In accordance with the present invention, a diamond film which is close to a single crystal and has a heteroepitaxy relation with the crystalline orientation of a substrate can be formed in a simple manner.
    Type: Grant
    Filed: October 28, 1997
    Date of Patent: August 29, 2000
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Jai-Young Lee, Yoon-Kee Kim, Yoon-Jung Yong, Young-Soo Han
  • Patent number: 6110543
    Abstract: The present invention is directed to a process for forming compound films that contain at least three elements. The films are formed on a substrate by directing a gas containing reactant species onto the substrate. The compound film is formed from an interaction between two reactant species. The third element is incorporated into the film as it formed. The third element is different from the other two elements that form the compound film and is hydrogen, deuterium, or oxygen. The presence of the third element enhances the properties of the compound film. At least a portion of the substrate remains within the purview of the plasma discharge while the compound film is formed on the substrate.
    Type: Grant
    Filed: November 23, 1998
    Date of Patent: August 29, 2000
    Assignee: Lucent Technologies Inc.
    Inventors: Anthony Michael DeSantolo, Kathleen S Krisch, Mary Louise Mandich, Robert Leon Opila, Jr., Marcus Weldon
  • Patent number: 6110240
    Abstract: The present invention provides a method of manufacturing a superhard article with diamond coat having an excellent resistance against breakaway or peeling off of its coat, in particular, a cutting tool. A carbide base material formed to a desired shape containing tungsten carbide (WC) as a main component is soaked in a solution of alkali chloride and undergoes electrolytic etching on the surface of the base material at a maximum removal speed of 0.2 to 1.5 .mu.m/min for 3 to 30 minutes and, after the surface of the base material is washed, a diamond coat is developed on the surface of the base material by vapor deposition.
    Type: Grant
    Filed: November 25, 1997
    Date of Patent: August 29, 2000
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Hiromi Saguchi, Takashi Okamura, Satoshi Iio
  • Patent number: 6110873
    Abstract: A powder in tube method of making an HTc superconductive multifilament strand having a silver-based matrix, in which method:prior to the monofilament step:a composite multilayer material is prepared comprising at least one silver-based sheet, and at least one layer of non-superconductive ceramic material that is permeable to oxygen; andduring the monofilament step, a thickness of composite multilayer material is interposed between first and second thicknesses of silver-based material, thereby forming said first silver-based envelope.
    Type: Grant
    Filed: March 27, 1998
    Date of Patent: August 29, 2000
    Assignee: Alcatel
    Inventors: Gerard Duperray, Fernard Grivon, Peter Friedrich Herrmann
  • Patent number: 6110542
    Abstract: A method for forming a film by a plasma CVD process in which a high density plasma is generated in the presence of a magnetic field is described, characterized by that the electric power for generating the plasma has a pulsed waveform. The electric power typically is supplied by microwave, and the pulsed wave may be a complex wave having a two-step peak, or may be a complex wave obtained by complexing a pulsed wave with a stationary continuous wave of an electromagnetic wave having the same or different wavelength as that of the pulsed wave. The process enables deposition of a uniform film having an excellent adhesion to the substrate, at a reduced power consumption.
    Type: Grant
    Filed: March 5, 1999
    Date of Patent: August 29, 2000
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akiharu Miyanaga, Tohru Inoue, Shunpei Yamazaki
  • Patent number: 6110530
    Abstract: Copper films having improved properties are deposited by chemical vapor deposition from an organocopper precursor of a blend of copper hexafluoroacetylacetonate trimethylvinylsilane and from about 1.0 to 5.0 percent by weight of trimethylvinylsilane that is vaporized in a vaporizer, and passed into a chemical vapor deposition chamber. Separately up to about 2 percent by weight of the precursor blend of water vapor is added directly to the chamber.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: August 29, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Ling Chen, Seshadri Ganguli, Bo Zheng, Samuel Wilson, Christophe Marcadal
  • Patent number: 6110529
    Abstract: A method of forming on a substrate a metal film, comprising depositing said metal film on said substrate via chemical vapor deposition from a metalorganic complex of the formula:MA.sub.Y Xwherein:M is a y-valent metal;A is a monodentate or multidentate organic ligand coordinated to M which allows complexing of MA.sub.y with X;y is an integer having a value of 2, 3 or 4; each of the A ligands may be the same or different; andX is a monodentate or multidentate ligand coordinated to M and containing one or more atoms independently selected from the group consisting of atoms of the elements C, N, H, S, O and F.The metal M may be selected from the group consisting of Cu, Ba, Sr, La, Nd, Ce, Pr, Sm, Eu, Th, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi, Tl, Y, Pb, Ni, Pd, Pt, Al, Ga, In, Ag, Au, Co, Rh, Ir, Fe, Ru, Sn, Li, Na, K, Rb, Cs, Ca, Mg, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W. A may be selected from the group consisting of .beta.-diketonates, .beta.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: August 29, 2000
    Inventors: Robin A. Gardiner, Peter S. Kirlin, Thomas H. Baum, Douglas Gordon, Timothy E. Glassman, Sofia Pombrik, Brian A. Vaartstra
  • Patent number: 6106894
    Abstract: NdFeB magnets are very sensitive to corrosion and are provided, among other things, with a layer of aluminum in order to improve their resistance to corrosion. To improve the resistance of an aluminum-coated article, such as the NdFeB magnet, the magnet with the aluminum coating is subjected to a heat treatment at a temperature lower than the melting temperature of the aluminum, which heat treatment improves the resistance to corrosion when subjected to a humid atmosphere at an elevated temperature.
    Type: Grant
    Filed: March 6, 1997
    Date of Patent: August 22, 2000
    Assignee: Vacuumschmelze GmbH
    Inventor: Lothar Zapf
  • Patent number: 6106892
    Abstract: A method of depositing a silicon oxide coating on a hot glass substrate by chemical vapor deposition which comprises contacting the substrate with a silane and a phosphorus or boron ester, for example, triakylphosphite or trialkylborate, preferably triethylphosphite. Preferably, the method is performed during the formation of glass by the float glass production process.
    Type: Grant
    Filed: May 20, 1998
    Date of Patent: August 22, 2000
    Assignee: Pilkington Plc
    Inventor: Liang Ye
  • Patent number: 6103305
    Abstract: A stress-relieved amorphous-diamond film is formed by depositing an amorphous diamond film with specific atomic structure and bonding on to a substrate, and annealing the film at sufficiently high temperature to relieve the compressive stress in said film without significantly softening said film. The maximum annealing temperature is preferably on the order of 650.degree. C., a much lower value than is expected from the annealing behavior of other materials.
    Type: Grant
    Filed: November 23, 1999
    Date of Patent: August 15, 2000
    Assignee: Sandia Corporation
    Inventors: Thomas A. Friedmann, John P. Sullivan
  • Patent number: 6103321
    Abstract: A method of manufacturing an ultraviolet resistant object, wherein the object has at least a portion made of a polymer material, and is provided with an ultraviolet shielding film covering at least a portion of a surface of the portion made of the polymer material, including the steps of forming the ultraviolet shielding film by vapor deposition over the surface of the portion to be covered with the film; and irradiating, prior to the formation of the ultraviolet shielding film or in an initial stage of the film forming step, the film formation surface with ions with an energy in a range from 0.05 keV to 2 keV to attain the total irradiation rate in a range from 1.times.10.sup.13 ions/cm.sup.2 to 5.times.10.sup.17 ions/cm.sup.2.
    Type: Grant
    Filed: December 16, 1998
    Date of Patent: August 15, 2000
    Assignee: Nissin Electric Co., Ltd.
    Inventors: Yasushi Fujinami, Akinori Ebe, Osamu Imai, Kiyoshi Ogata
  • Patent number: 6099966
    Abstract: A deposition target medium is disclosed for use in CVD of a diamond film wherein a hydrocarbon gas and atomic hydrogen are utilized in depositing the diamond film on the deposition target medium, which comprises a substrate having a Young's modulus of less than 50 GPa; and a coating on said substrate, said coating comprising a binder and diamond grit, said binder comprising a glass-forming oxide.
    Type: Grant
    Filed: November 12, 1998
    Date of Patent: August 8, 2000
    Assignees: Celestech, Inc., Saint-Gobain/Norton Industrial Ceramics Corporation
    Inventors: Gregory Bak-Boychuk, Martin G. Bradley, Darryl K. Mack, Stephen M. Jaffe, Matthew Simpson