Patents Examined by Shikha Goyal
  • Patent number: 7768342
    Abstract: In an embodiment, a current source having a piece-wise linear relationship between current and temperature is provided. The current source includes a first current source to provide current based on a first current-temperature relationship. The current source further includes a second current source coupled in parallel to the first current source. The second current source is to provide current based on a second current-temperature relationship. The current source further includes first mirroring circuitry to mirror a sum of the first current source and the second current source to an output current source. The current source also includes second mirroring circuitry to mirror the sum of the first current source and the second current source for comparison with a third current source. The third current source provides a minimum current magnitude and the third current source is coupled to the second current source to control output of the second current source.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: August 3, 2010
    Assignee: Maxim Integrated Products
    Inventor: Daniel R. McMahill
  • Patent number: 7764096
    Abstract: A delay locked loop (DLL) circuit includes a clock signal dividing unit that can divide a reference clock signal by a predetermined division ratio and generate a division clock signal, a feedback loop that can perform a delay locked operation on the division clock signal and generate a delay clock signal, a half period delay unit that can delay the delay clock signal by a half period of the reference clock signal and generate a half period delay clock signal, and an operation unit that can combine the delay clock signal and the half period delay clock signal and generate an output clock signal.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: July 27, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Hyun-Woo Lee, Won-Joo Yun
  • Patent number: 7755398
    Abstract: A time constant calibration device includes: a first voltage generating circuit utilizing a first current passing through a capacitive component to generate a first voltage; a second voltage generating circuit utilizing a second current passing through a resistive component to generate a second voltage; and a comparing circuit for comparing the first voltage with the second voltage to generate a comparing signal, wherein the first voltage generating circuit comprises an analog adjusting component for adjusting the first voltage according to the comparing signal until the first voltage is equal to the second voltage, whereby an RC time constant defined by an equivalent capacitance corresponding to the first current passing through the capacitive component and an equivalent impedance corresponding to the second current passing through the resistive component reaches a predetermined value.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: July 13, 2010
    Assignee: Faraday Technology Corp.
    Inventors: Song-Rong Han, Ming-Shih Yu
  • Patent number: 7755414
    Abstract: A normally closed solid state power relay with an optionally optically coupled input circuit at an input terminal with a driver circuit electrically coupled to input terminal to drive one or more a power transistors, preferably MOSFET transistors so that the power transistor is held in the on state by the driver when no voltage or a low level voltage is applied to the input terminal, and the power transistor is held in the off state by the driver when a high level voltage is applied to the input terminal. An energy storage device, a battery or capacitor, is coupled to the driver to powers the driver with the energy storage device being charged by energy from the input terminal when said input terminal when a high level voltage is applied to the input terminal. The energy storage device is charged by leakage current through a diode or through a resistor from the input circuit when the input circuit is in a high state.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: July 13, 2010
    Inventor: Vladimir Shvartsman
  • Patent number: 7755405
    Abstract: A delay locked loop (DLL) circuit includes a first delay control unit configured to generate a first delay control signal in response to a first phase detection signal to control a delay amount of a first delay line and to output a first delay amount information signal, a second delay control unit configured to generate a second delay control signal in response to a second phase detection signal to control a delay amount of a second delay line and to output a second delay amount information signal, and to control the delay amount of the second delay line again in response to the first delay control signal and a half cycle information signal, a half cycle detecting unit configured to receive the first delay amount information signal and the second delay amount information signal to extract half cycle information of a reference clock signal, thereby generating the half cycle information signal, and a duty cycle correcting unit configured to combine an output clock signal from the first delay line and an output
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: July 13, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Won-Joo Yun, Hyun-Woo Lee
  • Patent number: 7750692
    Abstract: Digital divider for low voltage LOGEN. LOGEN is a local oscillator generator. One implementation presented herein provides for a pseudo-complementary metal-oxide-semiconductor (CMOS), in that, it is not a true CMOS type circuitry that has no DC current dissipation, but nevertheless does operate well at relatively high frequencies and relatively low power supply voltage levels. Appropriately placed p-channel metal oxide semiconductor field-effect transistors (P-MOSFETs) and n-channel MOSFETs (e.g., N-MOSFETs) are employed to provide for an all digital divider circuitry. In some embodiments, four active circuitry element levels are stacked between a power supply voltage and ground voltage level. In other embodiments, three active circuitry element levels are stacked between a power supply voltage and ground voltage level. The three active circuitry element levels embodiment provides for a greater area savings (e.g.
    Type: Grant
    Filed: December 22, 2007
    Date of Patent: July 6, 2010
    Assignee: Broadcom Corporation
    Inventor: Behnam Mohammadi
  • Patent number: 7750707
    Abstract: High-resolution low-interconnect phase rotator. A signal may be generated having any desired phase (as determined by the step size employed). First and second control signals select a sector (e.g., the range from 0° to 360° is divided into a number of sectors) and a particular phase within that sector. Generally, this range from 0° to 360° is uniformly divided so that each sector is the same. However, if desired, there can alternatively be differences in the sizes of each of the sectors. The use of these two sets of controls signals (one for selecting the sector and one for selecting the particular phase within the sector) allows for very few control signals. N-channel metal oxide semiconductor field-effect transistor (N-MOSFET) based switches and differential pairs of transistors or alternatively p-channel metal oxide semiconductor field-effect transistor (P-MOSFET) based switches and differential pairs of transistors can be employed.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: July 6, 2010
    Assignee: Broadcom Corporation
    Inventor: Afshin Momtaz
  • Patent number: 7737762
    Abstract: A solid state switch that employs a controller driven input and MOSFET power switching devices is disclosed. The controller can test for a short-circuit on the load side of the MOSFET power switching devices before putting the switch in a sustained conductive state.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: June 15, 2010
    Assignee: Energate Inc
    Inventor: Jorge Deligiannis
  • Patent number: 7737760
    Abstract: A mixer has a controllable load, a signal mixing module, and a controller. The controllable load is controlled by a control signal to change an equivalent load value thereof. The signal mixing module has an output port coupled to the controllable load and an input port coupled to an input signal, and is used for mixing the input signal with a local oscillation signal. The controller is coupled to the controllable load, and is used for generating the control signal to reduce the equivalent load value of the controllable load during switching transients of the local oscillation signal.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: June 15, 2010
    Assignee: Mediatek Inc.
    Inventor: Jie-Wei Lai
  • Patent number: 7733137
    Abstract: A design structure including a system. The system includes a fractional-N phase-locked loop (PLL). The PLL includes a PLL input and a PLL output. The fractional-N PLL further includes a multiplexer. The multiplexer includes a multiplexer output electrically coupled to the PLL input. The multiplexer further includes M multiplexer inputs, M being an integer greater than 1. Two or more reference frequencies are applied to the inputs of the multiplexer, by the selection of one from the reference frequencies, the low spur can be reached.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: June 8, 2010
    Assignee: International Business Machines Corporation
    Inventor: Kai D. Feng
  • Patent number: 7733129
    Abstract: A memory clock signal is generated in response to a reference clock signal and a clock enable signal. The memory clock signal with a frequency identical to that of the reference clock signal is generated during the clock enable signal is in an enabled state; and the memory clock signal with a reduced frequency is generated when the clock enable signal is changed from the enabled state to a disabled state. The generation of a memory clock signal is adaptive so as to save power.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: June 8, 2010
    Assignee: Via Technologies, Inc.
    Inventor: Chi Chang
  • Patent number: 7733143
    Abstract: The present invention implements an apparatus for correcting duty cycle distortion in high speed clock signals. The apparatus includes delay cells that delay each of first and second differential initial clock signals. The apparatus further includes a latch that generates an output clock signal based on the delayed first and second differential initial clock signals. The apparatus further includes a differential feedback buffer that converts the output clock signal into first and second differential feedback signals. The apparatus further includes a feedback circuit that adjusts the delay cells based on the first and second differential feedback signals.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: June 8, 2010
    Assignee: Agere Systems Inc.
    Inventors: Chunbing Guo, Fuji Yang
  • Patent number: 7719345
    Abstract: A reference buffer circuit is disclosed, providing a reference voltage at an output node and comprising a closed-loop branch comprising an amplifier and first and second MOS transistors and an open-loop branch comprising third and fourth MOS transistors and a tracking circuit. The first MOS transistor has a gate coupled to an output terminal of the amplifier and a source coupled to a negative input terminal of the amplifier. The second MOS transistor is coupled to the source of the first MOS transistor. The third MOS transistor has a gate coupled to the output terminal and a source coupled to the output node. The fourth MOS transistor has a drain coupled to the source of the third MOS transistor. A gate voltage of the fourth MOS transistor tracks a drain voltage of the third MOS transistor through the tracking circuit.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: May 18, 2010
    Assignee: Mediatek Inc.
    Inventors: Yi-Hsien Cho, Yu-Hsin Lin
  • Patent number: 7719342
    Abstract: An input latch circuit of a semiconductor device includes a setup time adjusting unit configured to selectively delay a clock signal and a hold time adjusting unit configured to selectively delay an input signal. The input latch circuit also includes a latch unit configured to latch an output signal of the hold time adjusting unit according to an output signal of the setup time adjusting unit. The input latch circuit changes and delays the clock signal and the input signal by cutting a fuse within the setup time adjusting unit and the hold time adjusting unit without requiring a change to a circuit in order to adjust a setup time and a hold time.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: May 18, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Hoe Gwon Jeong
  • Patent number: 7710187
    Abstract: A gate drive circuit includes a turn-on side circuit for turning on a gate of a power switching device, the turn-on side circuit including a first turn-on side power supply circuit and a second turn-on side power supply circuit, the first turn-on side power supply circuit including: a first turn-on voltage source for supplying a first turn-on voltage; first turn-on wiring; and a first turn-on switch connected in the first turn-on wiring and controlled by a gate drive signal; and the second turn-on side power supply circuit including: a second turn-on voltage source for supplying a second turn-on voltage applied to the gate of the power switching device to set the power switching device in a steady (on) state; second turn-on wiring; a second turn-on switch connected in the second turn-on wiring; and a turn-on side delay circuit for delaying the gate drive signal and passing it to the second turn-on switch.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: May 4, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventor: Kazuaki Hiyama
  • Patent number: 7701269
    Abstract: A circuit for managing voltage swings across FETs comprising a reference precision resistor, a first FET and a second FET, wherein a gate of the first FET is tied to a gate of the second FET, wherein a drain to source resistance of the second FET is substantially equal to or is a multiple of a resistance of the reference precision resistor, and wherein a gate voltage of the second FET is applied to a gate of the first FET to set a bias point of the first FET, and a third FET cascoded to the first FET, wherein a source of the first FET is coupled to the drain of the third FET to extend a voltage range in which respective gate voltages of the first FET and the third FET maintain a linear relationship with respective drain to source voltages of the first FET and the third FET.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: April 20, 2010
    Assignee: International Business Machines Corporation
    Inventors: David William Boerstler, Jieming Qi
  • Patent number: 7701267
    Abstract: A semiconductor device including an edge synchronizer which outputs a synchronized strobe signal generated by synchronizing a transition time point of a strobe signal with clock edges of a main clock or a sub clock, a detector which outputs a phase determination signal indicating a phase difference between the main clock and the sub clock in response to the synchronized strobe signal, and a duty ratio corrector which adjusts a duty ratio of the main clock and the sub clock in response to the phase determination signal.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: April 20, 2010
    Assignee: Hynix Semiconductor, Inc.
    Inventors: Dae-Kun Yoon, Dae-Han Kwon, Chang-Kyu Choi, Jun-Woo Lee
  • Patent number: 7701262
    Abstract: A transmission line driver and a serial interface data transmission device including the same are provided. The transmission line driver includes a pre-driver configured to generate and output differential input data signals based on a serial transmission data signal, a differential amplifier configured to receive the differential input data signals and to output differential output data signals, and a common mode controller configured to drive the differential output data signals to a predetermined common mode voltage in an idle mode. Accordingly, power consumption can be reduced and a common mode specification can be supported.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: April 20, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chi Won Kim, Ji Young Kim, Myoung Bo Kwak, Jong Shin Shin, Seung Hee Yang, Hyun-Goo Kim, Jae Hyun Park
  • Patent number: 7696789
    Abstract: Disclosed is a high-frequency signal detector circuit including a diode detector circuit for detecting an input signal by diode detection; a differential-input/differential output amplifier with a common mode feedback circuit, the amplifier including a differential amplifying circuit for differentially receiving outputs of the diode detector circuit and outputting a differential output signal, and a common mode feedback circuit for controlling the differential amplifying circuit in such a manner that a voltage corresponding to a mid-point of the differential output signal from the differential amplifying circuit will take on a voltage identical with a prescribed voltage; and a differential-input/single-ended output amplifier for receiving the differential output signal of the differential amplifying circuit and outputting a single-ended output signal.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: April 13, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Naohiro Matsui
  • Patent number: 7679405
    Abstract: Various embodiments of the present invention provide systems and circuits for processing information through comparison of input signals. For example, various embodiments of the present invention provide differential latch circuits. Such differential latch circuits include an input stage and a latch stage. The input stage provides an interim output that is available during a defined period, and the latch stage is operable to latch the temporary interim output during the defined period using a common clock.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: March 16, 2010
    Assignee: Agere Systems Inc.
    Inventor: William B. Wilson