Patents Examined by Shouxiang Hu
  • Patent number: 11404410
    Abstract: A semiconductor device includes a substrate having a first region and a second region, a first gate structure disposed on the substrate within the first region, a first S/D region, a first S/D contact, a second gate structure on the substrate within the second region, a second S/D region and a second S/D contact. The first S/D region is disposed in the substrate within the first region and beside the first gate structure. The first S/D contact is connected to the first S/D region. The second S/D region is disposed in the substrate within the second region and beside the second gate structure. The second S/D contact is connected to the second S/D region. The contact area between the second S/D region and the second S/D contact is larger than a contact area between the first S/D region and the first S/D contact.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: August 2, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Meng-Han Lin, Te-An Chen
  • Patent number: 11398472
    Abstract: An RC IGBT with an n-barrier region in a transition section between a diode section and an IGBT section is presented.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: July 26, 2022
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Roman Baburske, Frank Dieter Pfirsch, Alexander Philippou, Christian Philipp Sandow
  • Patent number: 11398560
    Abstract: Embodiments herein describe techniques for a transistor above the substrate. The transistor includes a first gate dielectric layer with a first gate dielectric material above a gate electrode, and a second dielectric layer with a second dielectric material above a portion of the first gate dielectric layer. A first portion of a channel layer overlaps with only the first gate dielectric layer, while a second portion of the channel layer overlaps with the first gate dielectric layer and the second dielectric layer. A first portion of a contact electrode overlaps with the first portion of the channel layer, and overlaps with only the first gate dielectric layer, while a second portion of the contact electrode overlaps with the second portion of the channel layer, and overlaps with the first gate dielectric layer and the second dielectric layer. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: July 26, 2022
    Assignee: Intel Corporation
    Inventors: Gilbert Dewey, Van H. Le, Abhishek Sharma, Jack T. Kavalieros, Sean Ma, Seung Hoon Sung, Nazila Haratipour, Tahir Ghani, Justin Weber, Shriram Shivaraman
  • Patent number: 11393811
    Abstract: The invention solves the problem of depressed SOA of a bipolar junction transistor (BJT) when operated in an open base configuration by integrating in the same semiconductor chip a switchable short between the base and the emitter of the BJT. The switchable short switches between a high resistive value when the collector voltage of the BJT is lower than the base voltage. and a lower resistive value when the collector voltage is higher than the voltage base to effectively lower the BJT current gain (hFE). The switchable short in one implementation of the invention is in the form of a MOSFET with its gate connected to the BJT collector. The invention further teaches disposing in the integrated circuit chip a junction diode with a breakdown voltage lower than the BVCBO of the BJT. The addition of the junction diode provides a measure of maintaining the effectiveness of the MOSFET as switchable short at a reduced size.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: July 19, 2022
    Assignee: Diodes Incorporated
    Inventor: Peter Hugh Blair
  • Patent number: 11393927
    Abstract: Embodiments herein describe techniques for a semiconductor device including a capacitor and a transistor above the capacitor. A contact electrode may be shared between the capacitor and the transistor. The capacitor includes a first plate above a substrate, and the shared contact electrode above the first plate and separated from the first plate by a capacitor dielectric layer, where the shared contact electrode acts as a second plate for the capacitor. The transistor includes a gate electrode above the substrate and above the capacitor; a channel layer separated from the gate electrode by a gate dielectric layer, and in contact with the shared contact electrode; and a source electrode above the channel layer, separated from the gate electrode by the gate dielectric layer, and in contact with the channel layer. The shared contact electrode acts as a drain electrode of the transistor. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: July 19, 2022
    Assignee: Intel Coropration
    Inventors: Travis W. Lajoie, Abhishek Sharma, Van H. Le, Chieh-Jen Ku, Pei-Hua Wang, Jack T. Kavalieros, Bernhard Sell, Tahir Ghani, Juan Alzate Vinasco
  • Patent number: 11367789
    Abstract: A buffer layer is deposited on a substrate. A first III-V semiconductor layer is deposited on the buffer layer. A second III-V semiconductor layer is deposited on the first III-V semiconductor layer. The second III-V semiconductor layer comprises a channel portion and a source/drain portion. The first III-V semiconductor layer acts as an etch stop layer to etch a portion of the second III-V semiconductor layer to form the source/drain portion.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: June 21, 2022
    Assignee: Intel Corporation
    Inventors: Cheng-Ying Huang, Willy Rachmady, Matthew V. Metz, Gilbert Dewey, Jack T. Kavalieros, Sean T. Ma, Harold Kennel
  • Patent number: 11362203
    Abstract: Electrical overstress protection for electronic systems subject to electromagnetic compatibility fault conditions are provided herein. In certain implementations, a stacked thyristor protection structure with a high holding voltage includes a protection device having a trigger voltage and a holding voltage. A trigger voltage of the stacked thyristor protection structure is substantially equal to the trigger voltage of the protection device. The stacked thyristor protection structure further includes at least one resistive thyristor electrically connected to the protection device and operable to increase a holding voltage of the stacked thyristor protection structure relative to the holding voltage of the protection device. The at least one resistive thyristor comprising a PNP bipolar transistor and a NPN bipolar transistor that are cross-coupled, and a conductor connecting a collector of the PNP bipolar transistor to a collector of the NPN bipolar transistor.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: June 14, 2022
    Assignee: Analog Devices, Inc.
    Inventors: Javier A. Salcedo, Linfeng He
  • Patent number: 11355589
    Abstract: A semiconductor device with a junction type FET includes: a drift layer; a channel layer on the drift layer; a source layer in a surface portion of the channel layer; a gate layer in the channel layer; a body layer in the channel layer; a drain layer disposed on an opposite side of the source layer with respect to the drift layer; a gate wiring electrically connected to the gate layer; a first electrode electrically connected to the source layer and the body layer; and a second electrode electrically connected to the drain layer.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: June 7, 2022
    Assignee: DENSO CORPORATION
    Inventor: Kenji Kono
  • Patent number: 11348834
    Abstract: A circuit includes at least one bipolar transistor and at least one variable capacitance diode. The circuit is fabricated using a method whereby the bipolar transistor and variable capacitance diode are jointly produced on a common substrate.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: May 31, 2022
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Gregory Avenier, Alexis Gauthier, Pascal Chevalier
  • Patent number: 11349021
    Abstract: A power control switch assembly. The assembly may include a thyristor device, where the thyristor device includes a first device terminal, a second device terminal, and a gate terminal> The assembly may include a negative temperature coefficient (NTC) device, electrically coupled to the gate terminal of the thyristor device on a first end, and electrically coupled to the first device terminal of the thyristor device on a second end, wherein the NTC device is thermally coupled to the thyristor device.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: May 31, 2022
    Assignee: Littelfuse, Inc.
    Inventor: Koichiro Yoshimoto
  • Patent number: 11342449
    Abstract: An integrated circuit includes a junction field-effect transistor formed in a semiconductor substrate. The junction field-effect transistor includes a drain region, a source region, a channel region, and a gate region. A first isolating region separates the drain region from both the gate region and the channel region. A first connection region connects the drain region to the channel region by passing underneath the first isolating region in the semiconductor substrate. A second isolating region separates the source region from both the gate region and the channel region. A second connection region connects the source region to the channel region by passing underneath the second isolating region in the semiconductor substrate.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: May 24, 2022
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventor: Jean Jimenez Martinez
  • Patent number: 11335685
    Abstract: Disclosed are semiconductor memory devices and methods of fabricating the same. The semiconductor memory device comprises a first semiconductor pattern that is on a substrate and that includes a first end and a second end that face each other, a first conductive line that is adjacent to a lateral surface of the first semiconductor pattern between the first and second ends and that is perpendicular to a top surface of the substrate, a second conductive line that is in contact with the first end of the first semiconductor pattern, is spaced part from the first conductive line, and is parallel to the top surface of the substrate, and a data storage pattern in contact with the second end of the first semiconductor pattern. The first conductive line has a protrusion that protrudes adjacent to the lateral surface of the first semiconductor pattern.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: May 17, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Hyung Joon Kim, Hyun Jung Lee
  • Patent number: 11322478
    Abstract: A semiconductor device includes a wiring substrate and multiple semiconductor chips mounted on the wiring substrate by flip chip bonding with a resin being interposed between the wiring substrate and the semiconductor chips. The wiring substrate includes a chip mounting region in which the semiconductor chips are arranged in a matrix, and a resin injection region protruding from an end of the chip mounting region. The outer edge of the wiring substrate in the chip mounting region is positioned inward of the outer edge of the semiconductor chips arranged in the matrix. The outer edge of the wiring substrate in the resin injection region protrudes outward of the outer edge of the semiconductor chips arranged in the matrix.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: May 3, 2022
    Assignee: SHINKO ELECTRIC INDUSTRIES CO., LTD.
    Inventors: Takaharu Yamano, Yoshihiro Ihara
  • Patent number: 11322653
    Abstract: A light emitting device with on-chip optical power readout includes a light emitting mesa and a light detecting mesa formed adjacent to each other on the same substrate of a chip, and a portion of the light emitted from the light emitting mesa is transmitted to the light detecting mesa at least through the substrate. The light emitting mesa and the light detecting mesa have exactly the same epitaxial structure and can be electrically isolated from each other by an insulation layer, or an airgap formed therebetween, or by ion implantation. The light emitting mesa and the light detecting mesa can also share an n-type structure and a common n-electrode while having their own p-electrode, respectively.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: May 3, 2022
    Assignee: BOLB INC.
    Inventors: Jianping Zhang, Ying Gao, Ling Zhou, Alexander Lunev
  • Patent number: 11309312
    Abstract: The present application discloses a semiconductor device and a method for fabricating the semiconductor device. The semiconductor device includes a substrate including a center area and a peripheral area surrounding the center area, a first gate stack positioned on the peripheral area of the substrate, and an active column positioned in the center area of the substrate. A top surface of the first gate stack and a top surface of the active column are at a same vertical level.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: April 19, 2022
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Shing-Yih Shih
  • Patent number: 11289552
    Abstract: A display panel includes a substrate, a gate metal layer formed on a substrate, an insulating layer that covers the gate metal layer, and a source metal layer formed on the insulating layer. In a driving circuit region, the gate metal layer includes a first electrode and a second electrode separated from each other in a first direction and close to each other. The first electrode is positioned nearer than the second electrode to an active region and has a first side on a side facing the second electrode. The second electrode includes an ESD sacrificial portion. The ESD sacrificial portion includes a first part extending in the first direction and a second part facing the first side and extending in a second direction intersecting the first direction, the second part not overlapping a source metal of the source metal layer.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: March 29, 2022
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Hidetoshi Nakagawa, Yoshihisa Takahashi, Masahiro Matsuda
  • Patent number: 11289346
    Abstract: An electronic package and a method for fabricating the same are provided. The method includes: forming a circuit structure on an encapsulant; embedding a first electronic component and a plurality of conductive posts in the encapsulant; and disposing a second electronic component on the circuit structure. Since the first and second electronic components are arranged on opposite sides of the circuit structure, the electronic package can provide multi-function and high efficiency.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: March 29, 2022
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chen-Yu Huang, Chee-Key Chung, Chang-Fu Lin, Kong-Toon Ng, Rui-Feng Tai, Bo-Hao Ma
  • Patent number: 11289471
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to an electrostatic discharge (ESD) device and methods of manufacture. The structure (ESD device) includes: a trigger collector region having fin structures of a first dopant type, a collector region having fin structures in a well of a second dopant type and further including a lateral ballasting resistance; an emitter region having a well of the second dopant type and fin structures of the first dopant type; and a base region having a well and fin structures of the second dopant type.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: March 29, 2022
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: You Li, Alain F. Loiseau, Souvick Mitra, Tsung-Che Tsai, Robert J. Gauthier, Jr., Meng Miao
  • Patent number: 11282946
    Abstract: A semiconductor device includes an enhancement mode MOSFET and a junction FET. The MOSFET has a first semiconductor substrate of a first conductivity type, a first first-semiconductor-layer of the first conductivity type, first second-semiconductor-regions of a second conductivity type, first first-semiconductor-regions of the first conductivity type, first gate insulating films, first gate electrodes, a first first-electrode, and a first second-electrode. The FET has a second semiconductor substrate of the first conductivity type, a second first-semiconductor-layer of the first conductivity type, second first-semiconductor-regions of the first conductivity type, a second second-semiconductor-layer of the second conductivity type, second gate electrodes, a second first-electrode, and a second second-electrode. The first second-electrode and the second second-electrode are connected electrically.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: March 22, 2022
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Takeyoshi Nishimura
  • Patent number: 11282927
    Abstract: Contact structures for semiconductor devices are disclosed. Contact structures that include a metal layer and a substrate of a semiconductor device may be annealed to provide suitable contact resistance. Localized annealed regions may be formed in a pattern within the contact structure to provide a desired contact resistance while reducing exposure of other portions of the semiconductor device to anneal conditions. The annealed regions may be formed in patterns that reduce intersections between annealed regions and fracture planes of the substrate, thereby improving mechanical robustness of the semiconductor device. The patterns may include annealed regions formed in lines that are nonparallel with fracture planes of the substrate. The patterns may also include annealed regions formed in lines that are nonparallel with peripheral edges of the substrate.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: March 22, 2022
    Inventors: Edward Lloyd Hutchins, Jae-Hyung Park, Edward Robert Van Brunt