Patents Examined by Sikyin Ip
  • Patent number: 8795446
    Abstract: A copper alloy material, having an alloy composition containing any one or both of Ni and Co in an amount of 0.4 to 5.0 mass % in total, and Si in an amount of 0.1 to 1.5 mass %, with the balance being copper and unavoidable impurities, wherein a ratio of an area of grains in which an angle of orientation deviated from S-orientation {2 3 1}<3 4 6> is within 30° is 60 % or more, according to a crystal orientation analysis in EBSD measurement; an electrical or electronic part formed by working the copper alloy material; and a method of producing the copper alloy material.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: August 5, 2014
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Hiroshi Kaneko, Kiyoshige Hirose, Tatsuhiko Eguchi
  • Patent number: 8784581
    Abstract: An Fe—Ni alloy pipe stock containing, by mass %, C?0.04%, Si?0.50%, Mn: 0.01 to 6.0%, P?0.03%, S?0.01%, Cr: 20 to 30%, Ni: 30 to 45%, Mo: 0 to 10%, W: 0 to 20%, with Mo(%)+0.5W(%): more than 1.5% to not more than 10%, Cu: 0.01 to 1.5%, Al?0.01% and N: 0.0005 to 0.20%, and the balance being Fe, with 1440?6000P?100S?2000C?1300, Ni+10(Mo+0.5W)+100N?120, (Ni?35)+10(N?0.1)?2(Cr?25)?5(Mo+0.5W?3)+8?0, can be manufactured into a seamless pipe by use of a Mannesmann piercing and rolling mill because of its excellent inner surface properties. The resulting seamless pipe has excellent mechanical properties and moreover has excellent corrosion resistance in a sour gas environment.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: July 22, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Masaaki Igarashi, Kazuhiro Shimoda, Tomio Yamakawa, Hisashi Amaya
  • Patent number: 8784580
    Abstract: Disclosed is a Cu—Ni—Si copper alloy sheet that excels in strength and formability and is used in electrical and electronic components. The copper alloy sheet contains, by mass, 1.5% to 4.5% Ni and 0.3% to 1.0% of Si and optionally contains at least one member selected from 0.01% to 1.3% of Sn, 0.005% to 0.2% of Mg, 0.01% to 5% of Zn, 0.01% to 0.5% of Mn, and 0.001% to 0.3% of Cr, with the remainder being copper and inevitable impurities. The average size of crystal grains is 10 ?m or less, the standard deviation ? of crystal grain size satisfies the condition: 2?<10 ?m, and the number of dispersed precipitates lying on grain boundaries and having a grain size of from 30 to 300 nm is 500 or more per millimeter.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: July 22, 2014
    Assignee: Kobe Steel, Ltd.
    Inventors: Akira Fugono, Hiroshi Sakamoto
  • Patent number: 8778096
    Abstract: Provided is a low yield ratio, high strength and high toughness steel plate having excellent strain ageing resistance equivalent to API 5L X70 Grade or lower and a method for manufacturing the same. The steel plate has a metallographic microstructure that is a three-phase microstructure including bainite, M-A constituent, and quasi-polygonal ferrite, the area fraction of the bainite being 5% to 70%, the area fraction of the M-A constituent being 3% to 20%, the remainder being the quasi-polygonal ferrite, the equivalent circle diameter of the M-A constituent being 3.0 ?m or less. The steel plate has a yield ratio of 85% or less and a Charpy impact test absorbed energy of 200 J or more at ?30° C. before or after being subjected to strain ageing treatment at a temperature of 250° C. or lower for 30 minutes or less.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: July 15, 2014
    Assignee: JFE Steel Corporation
    Inventors: Junji Shimamura, Nobuyuki Ishikawa, Nobuo Shikanai
  • Patent number: 8771592
    Abstract: A solder composition includes about 4% to about 25% by weight tin, about 0.1% to about 8% by weight antimony, about 0.03% to about 4% by weight copper, about 0.03% to about 4% by weight nickel, about 66% to about 90% by weight indium, and about 0.5% to about 9% by weight silver. The composition can further include about 0.2% to about 6% by weight zinc, and, independently, about 0.01% to about 0.3% by weight germanium. The composition can be used to solder an electrical connector to an electrical contact surface on a glass component.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: July 8, 2014
    Assignee: Antaya Technologies Corp.
    Inventors: Jennie S. Hwang, John Pereira, Alexandra Mary Mackin, Joseph C. Gonsalves
  • Patent number: 8715428
    Abstract: The invention provides a hot-forging micro-alloyed steel and a hot-rolled steel which achieve excellent fracture-splitability and machinability, without impairing productivity or mechanical properties and without addition of Pb or the like. It also provides a component made of hot-forged micro-alloyed steel. The hot-forging micro-alloyed steel contains, in mass %, C: greater than 0.35 to 0.60%, Si: 0.50 to 2.50%, Mn: 0.20 to 2.00%, P: 0.010 to 0.150%, S: 0.040 to 0.150%, V: 0.10 to 0.50%, Zr: 0.0005 to 0.0050%, Ca: 0.0005 to 0.0050% and N: 0.0069 to 0.0200%, Al being limited to less than 0.010%, and a balance of Fe and unavoidable impurities.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: May 6, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Manabu Kubota, Shinya Teramoto
  • Patent number: 8715431
    Abstract: A Cu—Fe—P copper alloy sheet which has the high strength and the high electrical conductivity compatible with excellent bendability is provided. The Cu—Fe—P copper alloy sheet contains 0.01% to 3.0% of Fe and 0.01% to 0.3% of P on a percent by mass basis, wherein the orientation density of the Brass orientation is 20 or less and the sum of the orientation densities of the Brass orientation, the S orientation, and the Copper orientation is 10 or more and 50 or less in the microstructure of the copper alloy sheet.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: May 6, 2014
    Assignee: Kobe Steel, Ltd.
    Inventors: Yasuhiro Aruga, Katsura Kajihara
  • Patent number: 8668783
    Abstract: A steel wire rod is obtained, in which a gas flow rate during gas stirring in molten steel treatment is controlled to be 0.0005 Nm3/min to 0.004 Nm3/min per molten steel of 1 ton, thereby the rod satisfies a specified composition, and oxide base inclusions in any section including an axis line of the steel wire rod satisfy the following composition X, the inclusions having width of 2 ?m or more perpendicular to a rolling direction, wherein the number of the oxide base inclusions of the following composition A is 1 to 20, and the number of the oxide base inclusions of the following composition B is less than 1: composition X: when composition of inclusions is converted to Al2O3+MgO+CaO+SiO2+MnO=100%, Al2O3+CaO+SiO2?70% is given. composition A: when composition of inclusions is converted to Al2O3+CaO+SiO2=100%, 20%?CaO?50% and Al2O3?30% are given; and composition B: when composition of inclusions is converted to Al2O3+CaO+SiO2=100%, CaO>50% is given.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: March 11, 2014
    Assignee: Kobe Steel, Ltd.
    Inventors: Sei Kimura, Tsuyoshi Mimura, Tetsushi Deura
  • Patent number: 8668787
    Abstract: It is an object of the present invention to provide a Ag—Pd—Cu—Ge type silver alloy which can form a reflective electrode film having such two characteristics that it is very reduced in the lowering of reflectance caused by thermal deterioration and has resistant to yellowing caused by sulfurization even after a heating step in a process of producing a color liquid crystal display. The silver alloy according to the present invention includes a composition containing at least four elements including Ag as its major component, 0.10 to 2.89 wt % of Pd, 0.10 to 2.89 wt % of Cu and 0.01 to 1.50 wt % of Ge, and the total amount of Pd, Cu and Ge is 0.21 to 3.00 wt %.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: March 11, 2014
    Assignee: Furuya Metal Co., Ltd.
    Inventor: Atsushi Watanabe
  • Patent number: 8657973
    Abstract: Magnesium-based alloy wire excelling in strength and toughness, its method of manufacture, and springs in which the magnesium-based alloy wire is utilized are made available. The magnesium-based alloy wire contains, in mass %, 0.1 to 12.0% Al, and 0.1 to 1.0% Mn, and is provided with the following constitution. Diameter d that is 0.1 mm or more and 10.0 mm or less; length L that is 1000d or more; tensile strength that is 250 MPa or more; necking-down rate that is 15% or more; and elongation that is 6% or more. Such wire is produced by draw-forming it at a working temperature of 50° C. or more, and by heating it to a temperature of 100° C. or more and 300° C. or less after the drawing process has been performed.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: February 25, 2014
    Assignees: Sumitomo Electric Industries, Ltd., Sumitomo (SEI) Steel Wire Corp.
    Inventors: Yukihiro Oishi, Nozomu Kawabe
  • Patent number: 8657969
    Abstract: A high strength galvanized steel sheet has a TS of 590 MPa or more and excellent processability. The component composition contains, by mass %, C: 0.05% to 0.3%, Si: 0.7% to 2.7%, Mn: 0.5% to 2.8%, P: 0.1% or lower, S: 0.01% or lower, Al: 0.1% or lower, and N: 0.008% or lower, and the balance: Fe or inevitable impurities. The microstructure contains, in terms of area ratio, ferrite phases: 30% to 90%, bainite phases: 3% to 30%, and martensite phases: 5% to 40%, in which, among the martensite phases, martensite phases having an aspect ratio of 3 or more are present in a proportion of 30% or more.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: February 25, 2014
    Assignee: JFE Steel Corporation
    Inventors: Yoshiyasu Kawasaki, Tatsuya Nakagaito, Shinjiro Kaneko, Saiji Matsuoka
  • Patent number: 8652274
    Abstract: A copper alloy includes Si to facilitate deoxidation, and can be easily manufactured even when including elements such as Cr or Sn. The copper alloy has high conductivity and high workability without negatively affecting the tensile strength. The copper alloy contains 0.2 to 0.4 wt % of Cr, 0.05 to 0.15 wt % of Sn, 0.05 to 0.15 wt % of Zn, 0.01 to 0.30 wt % of Mg, 0.03 to 0.07 wt % of Si, with the remainder being Cu and inevitable impurities. A method for manufacturing the copper alloy includes obtaining a molten metal having the described composition; obtaining an ingot; heating the ingot at a temperature of 900-1000° C. to perform a hot rolling process; cold rolling; performing a first aging process at a temperature of 400-500° C. for 2 to 8 hours; cold rolling; and performing a second aging process at a temperature of 370-450° C. for 2 to 8 hours.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: February 18, 2014
    Assignee: Poonsgan Corporation
    Inventors: Dae Hyun Kim, Dong Woo Lee, In Dal Kim, Sang Young Choi, Ji Hoon Lee, Bo Min Jeon
  • Patent number: 8641838
    Abstract: A copper alloy sheet material, having a composition containing any one or both of Ni and Co in an amount of 0.5 to 5.0 mass % in total, and Si in an amount of 0.3 to 1.5 mass %, with the balance of copper and unavoidable impurities, wherein an area ratio of cube orientation {0 0 1} <1 0 0> is 5 to 50%, according to a crystal orientation analysis in EBSD measurement.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: February 4, 2014
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Hiroshi Kaneko, Kiyoshige Hirose, Koji Sato
  • Patent number: 8641837
    Abstract: A Cu—Ni—Sn—P alloy is provided, which is excellent in stress relaxation property in a direction perpendicular to a rolling direction, and has any of high strength, high conductivity, and excellent bendability. A copper alloy contains 0.1 to 3.0% of Ni, 0.1 to 3.0% of Sn, and 0.01 to 0.3% of P in mass percent respectively, and includes copper and inevitable impurities as the remainder; wherein in a radial distribution function around a Ni atom according to a XAFS analysis method, a first peak position is within a range of 2.16 to 2.35 ?, the position indicating a distance between a Ni atom in Cu and an atom nearest to the Ni atom. Thus, distances to atoms around the Ni atom in Cu are comparatively increased, so that the stress relaxation property in a direction perpendicular to the rolling direction of the copper alloy is improved.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: February 4, 2014
    Assignee: Kobe Steel, Ltd.
    Inventors: Yasuhiro Aruga, Katsura Kajihara
  • Patent number: 8628631
    Abstract: The present invention provides a ferritic stainless steel casting and a sheet thereof excellent in deep drawability, punch stretchability and ridging resistance and a method for producing the casting and the sheet. In the present invention, a chemical composition is controlled so that the amounts of C, N, Si, Mn, P and Ti may be reduced to the utmost for securing high workability and, on the basis of the chemical composition, the roping and ridging of a steel sheet product is reduced by adding Mg, thus dispersing Mg containing oxides that accelerate the formation of nuclei for solidification and, resultantly, suppressing the development of coarse columnar crystals in a casting. The present invention is characterized in that the average composition of the Mg containing oxides dispersing in a casting satisfies the following expressions <2> and <3>, 17.4(Al2O3)+3.9(MgO)+0.3(MgAl2O4)+18.7(CaO)?500??<2>, (Al2O3)+(MgO)+(MgAl2O4)+(CaO)?95??<3>.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: January 14, 2014
    Assignee: Nippon Steel & Sumikin Stainless Steel Corporation
    Inventors: Akihiko Takahashi, Junichi Hamada, Ken Kimura, Takashi Morohoshi, Yoshihito Yamada, Toyohiko Kakihara, Satoshi Hashimoto
  • Patent number: 8603390
    Abstract: A brazing alloy including copper (Cu), phosphorus (P), and strontium (Sr) and any one element of indium (In), boron (B), silver (Ag), tin (Sn), cesium (Cs), germanium (Ge), and nickel (Ni). The brazing alloy includes 5.0 to 7.5 wt % of phosphorus (P) and 0.1 to 5.0 wt % of strontium (Sr) and the remainder is composed of copper (Cu). The brazing alloy includes copper (Cu), phosphorus (P), and strontium (Sr) unlike the existing alloy element. The brazing alloy further includes, as alloy components, one or more elements of indium (In), boron (B), silver (Ag), and tin (Sn). The brazing alloy includes no silver (Ag) or the silver (Ag) content is reduced compared to an existing brazing alloy containing silver (Ag).
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: December 10, 2013
    Assignee: Alcoma, Ltd.
    Inventor: Chu Hyon Cho
  • Patent number: 8597439
    Abstract: A high-strength cold rolled steel sheet contains: 0.10 to 0.28% of C, 1.0 to 2.0% of Si, 1.0 to 3.0% of Mn, and 0.03 to 0.10% of Nb in terms of % by mass, Al is controlled to 0.5 or less, P is controlled to 0.15% or less, and S is controlled to 0.02% or less, and residual austenite accounts for 5 to 20%, bainitic ferrite accounts for 50% or more, and polygonal ferrite accounts for 30% or less (containing 0%), of the entire structure, and a mean number of residual austenite blocks is 20 or more as determined when the random area (15 ?m×15 ?m) is observed by EBSP (electron back scatter diffraction pattern).
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: December 3, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Shushi Ikeda, Yoichi Mukai, Hiroshi Akamizu, Koichi Makii, Koichi Sugimoto, Shunichi Hashimoto, Kenji Saito
  • Patent number: 8562763
    Abstract: A high strength ?+?-type titanium alloy, containing, by mass %, 4.4% to less than 5.5% of Al, 1.4% to less than 2.1% of Fe, and 1.5 to less than 5.5% of Mo and including, as impurities, Si suppressed to less than 0.1% and C suppressed to less than 0.01% and a balance of Ti and unavoidable impurities.
    Type: Grant
    Filed: April 5, 2005
    Date of Patent: October 22, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Hiroaki Otsuka, Hideki Fujii, Mitsuo Ishii
  • Patent number: 8562764
    Abstract: A copper alloy tube according to the present invention includes Sn 0.1 to 2.0 mass %, P 0.005 to 0.1 mass %, S 0.005 mass % or less, O 0.005 mass % or less, and H 0.0002 mass % or less, and the remainder has a composition consisting of Cu and unavoidable impurities. And, as is annealed, the copper alloy tube has the following characteristics: a tensile strength in the longitudinal direction of the copper alloy tube is 250 N/mm2 or more; an average grain diameter is 30 ?m or less when measured in the direction perpendicular to the thickness direction of the tube, in the cross section perpendicular to the tube axis; and assuming that a tensile strength in the longitudinal direction of the copper alloy tube is ?L, and a tensile strength in the circumferential direction of the same is ?T, ?T/?L>0.93 holds.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: October 22, 2013
    Assignee: Kobelco & Materials Copper Tube, Ltd.
    Inventors: Masato Watanabe, Takashi Shirai
  • Patent number: 8529711
    Abstract: An induction heat treatment method with which temperature control is enabled, condition setting is easy, and the quality of a treatment object can be stabilized includes: a data acquiring step of heating and quench-hardening a sample of the treatment object to thereby acquire process data; a storing step of storing the process data; a checking step of checking the power supply output transition data and the quenching timing data as to validity based on the temperature transition data stored in the storing step; and a mass production step of performing heat treatment of the treatment object in accordance with the power supply output transition data and the quenching timing data stored in the storing step and checked as to validity in the checking step.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: September 10, 2013
    Assignee: NTN Corporation
    Inventors: Takumi Fujita, Nobuyuki Suzuki