Patents Examined by Stuart Hendrickson
  • Patent number: 8871173
    Abstract: Methods for production of carbon black using high temperature feedstock at temperatures exceeding about 300° C. with fouling control are provided. An apparatus for production of carbon black according to these methods also is provided.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: October 28, 2014
    Assignee: Cabot Corporation
    Inventors: Serguei Nester, Frederick H. Rumpf, Yakov E. Kutsovsky, Charles A. Natalie
  • Patent number: 8865351
    Abstract: A method for fabricating a porous carbon material possessing a hierarchical porosity, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic component, (iii) a dione component in which carbonyl groups are adjacent, and (iv) an acidic component, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a carbon material possessing a hierarchical porosity comprised of mesopores and macropores. Also described are the resulting hierarchical porous carbon material, a capacitive deionization device in which the porous carbon material is incorporated, as well as methods for desalinating water by use of said capacitive deionization device.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: October 21, 2014
    Assignee: UT-Battelle, LLC
    Inventors: Richard T. Mayes, Sheng Dai
  • Patent number: 8852547
    Abstract: A new method for recovering a catalytic metal and carbon nanotubes from a supported catalyst is provided. The carbon nanotube, including carbon nanotube structures, may serve as the support for the catalytic metal. The valence state of the catalytic metal, if not already in the positive state, is raised to a positive state by contacting the supported catalyst with a mild oxidizing agent under conditions which does not destroy the carbon nanotube. The supported catalyst is simultaneously or subsequently contacted with an acid solution to dissolve the catalytic metal without dissolving the carbon nanotube.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: October 7, 2014
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Jun Ma, Robert Hoch
  • Patent number: 8834827
    Abstract: An integrated method and apparatus to continuously produce purified Single Wall Carbon Nanotubes (SWNT) from a continuous supply of solid carbon powder fed to an induction plasma torch. The apparatus includes a reactor body disposed to maintain laminar flow of gases with the torch body and coupled to a quenching body where temperature and residence time is controlled. Conveniently, functionalization may take place in the quenching body. The torch is operated with an argon carrier gas, an argon stabilizing gas and a helium sheath gas. Solid carbon reactants are preferably mixed with at least two metal catalysts containing nickel and cobalt with additional metal oxides of yttrium and cerium being desirable.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: September 16, 2014
    Assignees: National Research Council of Canada, Universite de Sherbrooke
    Inventors: Benoit Simard, Christopher Thomas Kingston, Stephane Denommee, Gervais Soucy, German Cota Sanchez
  • Patent number: 8828348
    Abstract: A reduced puffing needle coke is formed, which includes a lesser amount of nitrogen within the coke so that carbon articles produced from such coke experience minimal expansion upon heating to graphitization temperatures.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: September 9, 2014
    Assignee: GrafTech International Holdings Inc.
    Inventors: Douglas J. Miller, Ching-Feng Chang, Irwin C. Lewis, Aaron Tomasek, Richard L. Shao
  • Patent number: 8821946
    Abstract: Highly compactable granulations and methods for preparing highly compactable granulations are disclosed. More particularly, highly compactable calcium carbonate granulations are disclosed. The granulations comprise powdered materials such as calcium carbonate that have small median particle sizes. The disclosed granulations are useful in pharmaceutical and nutraceutical tableting and provide smaller tablet sizes upon compression than previously available.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: September 2, 2014
    Assignee: Delavau L.L.C.
    Inventors: Kevin W. Lang, James W. Dibble, Raya Levin, Gregory B. Murphy
  • Patent number: 8815302
    Abstract: Highly compactable granulations and methods for preparing highly compactable granulations are disclosed. More particularly, highly compactable calcium carbonate granulations are disclosed. The granulations comprise powdered materials such as calcium carbonate that have small median particle sizes. The disclosed granulations are useful in pharmaceutical and nutraceutical tableting and provide smaller tablet sizes upon compression than previously available.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: August 26, 2014
    Assignee: Delavau LLC
    Inventors: Kevin W. Lang, James W. Dibble, Raya Levin, Gregory B. Murphy
  • Patent number: 8809231
    Abstract: A method for activating carbon via alkali activation processes includes the introduction of water vapor during the activation phase to control the formation of highly reactive by-products. The method includes heating the mixture of a carbon-containing first material and a alkali-containing second material, introducing water vapor at a first threshold temperature and stopping water vapor introduction at a second threshold temperature. The activated carbon material is suitable for carbon-based electrodes and for use in high energy density devices.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: August 19, 2014
    Assignee: Corning Incorporated
    Inventors: Jia Liu, Kamjula Pattabhirami Reddy, Kishor Purushottam Gadkaree
  • Patent number: 8809227
    Abstract: A composite product for the selective removal of dissolved heavy metal ions from water includes a high bulk cotton fabric incorporating a thermally generated polymer in sufficient amount to cause stiffening of the composite product and self-curling when immersed in water.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: August 19, 2014
    Inventor: Norman B. Rainer
  • Patent number: 8809230
    Abstract: A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: August 19, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Theodore F. Baumann, Joe H. Satcher, Jr., Michael Stadermann
  • Patent number: 8801855
    Abstract: Embodiments of the present invention relate to a process for obtaining silicon crystals from silicon. The method includes contacting silicon powder with a solvent metal to provide a mixture containing silicon, melting the silicon under submersion to provide a first molten liquid, contacting the first molten liquid with a first gas to provide dross and a second molten liquid, separating the dross and the second molten liquid, cooling the second molten liquid to form first silicon crystals and a first mother liquid and separating the first silicon crystals and the first mother liquid.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: August 12, 2014
    Assignee: Silicor Materials Inc.
    Inventor: Scott Nichol
  • Patent number: 8790713
    Abstract: Highly compactable granulations and methods for preparing highly compactable granulations are disclosed. More particularly, highly compactable calcium carbonate granulations are disclosed. The granulations comprise powdered materials such as calcium carbonate that have small median particle sizes. The disclosed granulations are useful in pharmaceutical and nutraceutical tableting and provide smaller tablet sizes upon compression than previously available.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: July 29, 2014
    Assignee: Delavau, L.L.C.
    Inventors: Kevin W. Lang, James W. Dibble, Raya Levin, Gregory B. Murphy
  • Patent number: 8785349
    Abstract: A photocatalyst is provided that comprises activated carbon produced from date pits, impregnated with TiO2. The activated carbon can have a porous surface that can attract and trap pollutants flowing in air or water. The photocatalyst can be made by a method that includes preparing activated carbon by calcining date pits to form a precursor material, and then impregnating the precursor material with titanium dioxide.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: July 22, 2014
    Inventors: Yousef Saleh Al-Zeghayer, Sami M. Bashir, Ahmed V. Yaser, Hassan M. El Dekki, Waheed A. Al-Masry, Fadi M. Trabzuni
  • Patent number: 8784902
    Abstract: Highly compactable granulations and methods for preparing highly compactable granulations are disclosed. More particularly, highly compactable calcium carbonate granulations are disclosed. The granulations comprise powdered materials such as calcium carbonate that have small median particle sizes. The disclosed granulations are useful in pharmaceutical and nutraceutical tableting and provide smaller tablet sizes upon compression than previously available.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: July 22, 2014
    Assignee: Delavau L.L.C.
    Inventors: Kevin W. Lang, James W. Dibble, Raya Levin, Gregory B. Murphy
  • Patent number: 8784768
    Abstract: Hierarchically porous graphitic carbon particles are prepared by an aerosol process using a aqueous solution of a carbon precursor compound in which different sized particles or clusters of silicon oxide species are dispersed. The aerosol is heated to evaporate the solvent. The solid residue is carbonized and non-carbon species removed to obtain small porous particles of graphitic carbon. The interconnected, different size pores in the small carbon particles make them very useful as electrode materials in electrochemical devices, such as supercapacitors, in which efficient ion transport through the pores or the particles is required.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: July 22, 2014
    Assignees: GM Global Technology Operations LLC, The Regents of The University of California
    Inventors: Mei Cai, Yunfeng Lu, Zheng Chen
  • Patent number: 8784765
    Abstract: Disclosed in that a fullerene aggregate and a method for preparing the same, and the fullerene aggregate including a cube-shaped crystalline C70 non-solvent aggregate.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: July 22, 2014
    Assignee: Postech Academy-Industry Foundation
    Inventors: Hee Cheul Choi, Chi Beom Park
  • Patent number: 8765086
    Abstract: A process for removal of H2S and CO2 from an acid gas stream comprising H2S and CO2, the process comprising the steps of: (a) reacting H2S in the acid gas stream with SO2 to form sulphur vapor and water vapor, thereby obtaining a first off-gas stream comprising CO2, water vapor, sulphur vapor, residual SO2 and residual H2S; (b) converting residual SO2 in the first off-gas stream to H2S in a first off-gas treating reactor, thereby obtaining a second off-gas stream depleted in SO2 and enriched in H2S and CO2 compared to the first off-gas stream; (c) contacting the second off-gas stream with an H2S absorbing liquid, thereby transferring H2S from the gas stream to the H2S absorbing liquid to obtain H2S absorbing liquid enriched in H2S and a third off-gas stream enriched in CO2; (d) removing CO2 from the third off-gas stream by contacting the third off-gas stream with CO2 absorbing liquid in a CO2 absorber, thereby transferring CO2 from the third off-gas stream to the CO2 absorbing liquid to obtain CO2 absorbing l
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: July 1, 2014
    Assignee: Shell Oil Company
    Inventors: Theodorus Johannes Brok, Gerardus Petrus Van Der Zwet
  • Patent number: 8765088
    Abstract: The degradation of an absorbent solution comprising organic compounds having a amine function in aqueous solution is substantially reduced in the presence of a small amount of thiadiazole-derived degradation inhibiting agents defined by the general formula as follows: The absorbent solution is used to deacidize a gaseous effluent.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: July 1, 2014
    Assignee: IFP Energies nouvelles
    Inventors: Pierre-Louis Carrette, Bruno Delfort
  • Patent number: 8765951
    Abstract: This invention provides novel compositions comprising substituted polyamines as acid gas scrubbing solutions and methods of using the compositions in an industrial system. The invention relates to the use of such polyamine compounds in industrial processes to remove acidic contaminants from natural and industrial fluid streams, such as natural gas, combustion gas, natural gas, synthesis gas, biogas, and other industrial fluid streams. The compositions and methods of the invention are useful for removal, absorption, or sequestration of acidic contaminants and sulfide contaminants including CO2, H2S, RSH, CS2, COS, and SO.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: July 1, 2014
    Assignee: Nalco Company
    Inventors: Alan M. Blair, Keith N. Garside, William J. Andrews, Kailas B. Sawant
  • Patent number: 8759253
    Abstract: The invention is directed to a chemically activated carbon, based on a combination of wood particles and comminuted carbonaceous vegetable material selected from kernel or shell material, in a weight ratio of between 5-95 to 90-10, preferably between 15-85 and 90-10, further optionally containing a binder, said carbon having been chemically activated using phosphoric acid or zinc chloride and to a process for producing same.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: June 24, 2014
    Assignee: Cabot Norit Nederland B.V.
    Inventors: Ralph Richard De Leede, Eduardus Gerardus Johannes Staal, Michael Rodgers, Wilhelmina Margaretha Theresia Maria Reimerink-Schats