Patents Examined by Stuart Hendrickson
  • Patent number: 9187338
    Abstract: Acicular strontium carbonate particles are manufactured by introducing gaseous carbon dioxide into an aqueous solution or suspension of strontium hydroxide having a concentration of 1 to 20 wt. %, at a flow rate of 0.5 to 200 mL/min., relative to one gram of the strontium hydroxide, while stirring the solution or suspension in the presence of a dicarboxylic acid, in which the dicarboxylic acid comprises a divalent linear hydrocarbon group having one to four carbon atoms and carboxyl group bonded to each terminals, with the proviso that the linear hydrocarbon group may be substituted with one or more C1-6 alkyl groups, and thus carbonating the strontium hydroxide.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: November 17, 2015
    Assignee: Ube Material Industries, Ltd.
    Inventors: Fumio Okada, Takeshi Himoto, Masayuki Fujimoto
  • Patent number: 9186619
    Abstract: A CO2 recovery unit 10A according to a first embodiment has a CO2 absorber that removes CO2 in flue gas by bringing the flue gas containing CO2 into contact with a CO2 absorbent 12, and a regenerator 15 that diffuses CO2 in a rich solution 14 having absorbed CO2 in the CO2 absorber. The CO2 recovery unit 10A includes a first compressor 29-1 to a fourth compressor 29-4 that compress CO2 gas 16 discharged from the regenerator 15, a dehydrating column 33 that reduces moisture in the CO2 gas 16 by bringing the CO2 gas 16 into contact with a dehydrating agent 32, a combustion removal unit 41 that removes the dehydrating agent 32 mixed in the CO2 gas 16 in the dehydrating column 33, and a heat exchanger 42 that performs heat exchange between the CO2 gas 16 discharged from the third compressor 29-3 and the CO2 gas 16 discharged from the dehydrating column 33.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: November 17, 2015
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Takuya Hirata, Keiji Fujikawa, Tatsuya Tsujiuchi, Tsuyoshi Oishi
  • Patent number: 9180403
    Abstract: An aqueous ionic absorbent solution is disclosed containing (a) about 15 wt. % to about 80 wt. % of one or more diluents, based on the total weight of the aqueous ionic absorbent solution; and (b) an ionic absorbent containing a cation and an anion comprising an amine moiety.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: November 10, 2015
    Assignees: Chevron U.S.A. Inc., University of South Alabama
    Inventors: Daniel Chinn, Russell Evan Cooper, Zunqing He, James H. Davis, Jr., Kevin N. West, Hye Kyung Timken, Michael S. Driver
  • Patent number: 9180220
    Abstract: A water absorbing agent of the present invention has an internal crosslinking structure obtained by polymerization of a water-soluble unsaturated monomer. The agent satisfies conditions (a) to (d): (a) the agent contains water-insoluble inorganic particles at an amount of from 10 ppm to 1,900 ppm inclusive; (b) the agent contains 5 mass % or less particles which have such a size that they can pass through a sieve having a mesh opening size of 150 ?m; (c) the agent has an absorbency against a pressure of 4.83 kPa (AAP) of 18 g/g or more; and (d) the water-insoluble inorganic particles reside on a surface of the water absorbing resin or near the surface.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: November 10, 2015
    Assignee: NIPPON SHOKUBAI CO., LTD.
    Inventors: Kazushi Torii, Hirofumi Shibata, Kazuki Kimura, Yasuhisa Nakashima, Motohiro Imura, Hiroko Ueda, Katsuyuki Wada
  • Patent number: 9174857
    Abstract: A procedure of obtaining adsorbent from a waste material and its use are disclosed. This invention provides a natural waste material, specifically avocado seed, its preparation and use for the filling of columns used in the elimination of contaminants present in wastewater. The particles have an irregular shape and variable size for filling columns of different diameter and length. The adsorbent has sufficient hardness for avoiding a particle collapse. The material does not rot, is re-generable and ecological. In the present invention the preparation of the adsorbent, its pre-activation, carbonization and application to eliminate the color of textile wastewater is disclosed. The color elimination from textile wastewater, as well as decrease of salts, total suspended solids, chemical oxygen demand (COD) and total organic carbon (TOC), is carried out passing the textile wastewater through a column filled with the prepared adsorbent. In batch systems metals dissolved in water can be eliminated.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: November 3, 2015
    Assignee: UNIVERSIDAD AUTONOMA DE PUEBLA
    Inventors: Maria de la Paz Elizalde Gonzalez, Martin Marino Davila Jimenez, Omar Ornelas Davila
  • Patent number: 9174205
    Abstract: The invention is directed to a method for preparing catalytically active activated carbon, to catalytically active activate carbon obtainable by the method, and to the use of the catalytically active activated carbon. The method of the invention method comprises the steps of: i) mixing charcoal with one or more organic nitrogen-containing compounds, said nitrogen-containing compounds comprising, next to a first nitrogen atom, at least two or more further heteroatoms selected from the group consisting of nitrogen and oxygen, wherein said further heteroatoms have a lone pair; ii) drying the mixture obtained in step i); iii) activating the dried mixture using steam, thereby producing catalytically active activated carbon.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: November 3, 2015
    Assignee: CABOT NORIT NEDERLAND B.V.
    Inventors: Wilhelmina Margaretha Theresia Maria Reimerink-Schats, Dirk van de Kleut
  • Patent number: 9174878
    Abstract: A known method for producing a porous carbon product comprises producing a monolithic template from inorganic matrix material having pores connected to each other, infiltrating the pores of the template with carbon or a carbon precursor substance forming a green body framework containing carbon surrounded by matrix material and calcining the green body framework forming the porous carbon product. In order to provide a method proceeding herefrom which permits cost-effective production of a product from porous carbon, according to the invention the production of the template comprises a soot separation process in which a hydrolyzable or oxidable starting compound of the matrix material is supplied to a reaction zone, therein converted to matrix material particles by hydrolysis or pyrolysis, the matrix material particles are agglomerated or aggregated and formed to the template.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: November 3, 2015
    Assignee: Heraeus Quarzglas GmbH & Co. KG
    Inventor: Christian Neumann
  • Patent number: 9169370
    Abstract: This disclosure involves an adsorption-desorption material, e.g., crosslinked polyvinyl-amine material having an Mw from about 500 to about 1×106, total pore volume from about 0.2 cc/g to about 2.0 cc/g, and a CO2 adsorption capacity of at least about 0.2 millimoles per gram of crosslinked material, and/or linear polyvinyl-amine material having an Mw from about 160 to about 1×106, total pore volume from about 0.2 cc/g to about 2.0 cc/g, and a CO2 adsorption capacity of at least about 0.2 millimoles per gram of linear material. This disclosure also involves processes for preparing the crosslinked polyvinyl-amine materials and linear polyvinyl-amine materials, as well as selective removal of CO2 and/or other acid gases from a gaseous stream using the polyvinyl-amine materials.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: October 27, 2015
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Dennis G. Peiffer, David C. Calabro, Quanchang Li, Mobae Afeworki
  • Patent number: 9169369
    Abstract: An adsorption-desorption material, in particular, crosslinked vinylepoxide-amine polymeric materials having an Mw from about 500 to about 1×106, a total pore volume from about 0.2 cc/g to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles adsorbed CO2 per gram of adsorption-desorption material, and linear vinylepoxide-amine polymeric materials having an Mw from about 140 to about 1×106, a total pore volume from about 0.2 cc/g to about 2.0 cc/g, and an adsorption capacity of at least about 0.2 millimoles adsorbed CO2 per gram of adsorption-desorption material. This disclosure also relates to processes for preparing the crosslinked and linear vinylepoxide-amine materials, as well as to selective removal of CO2 and/or other acid gases from a gaseous stream using the vinylepoxide materials.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: October 27, 2015
    Assignee: ExxonMobil Research and Engineered Company
    Inventors: Dennis G. Peiffer, David C. Calabro, Quanchang Li, Mobae Afeworki
  • Patent number: 9166250
    Abstract: The separator for a battery according to the present invention is a separator for a battery including an insulator layer containing a fibrous material having a heat resistant temperature of equal to or higher than 150° C., insulating inorganic fine particles and a binder, or a separator for a battery including a porous layer formed of a thermal melting resin and an insulator layer containing insulating inorganic fine particles and a binder, wherein water content per unit volume is equal to or smaller than 1 mg/cm3 when the separator is held for 24 hours in an atmosphere with a relative humidity of 60% at 20° C. The use of the separator for a battery according to the present invention makes it possible to provide a lithium secondary battery that has favorable reliability and safety and is excellent in storage characteristics and charge-discharge cycle characteristics.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: October 20, 2015
    Assignee: HITACHI MAXELL, LTD.
    Inventors: Hideaki Katayama, Eri Kojima, Shigeo Aoyama, Yoshinori Sato
  • Patent number: 9156694
    Abstract: A porous carbon that retains a three-dimensional network structure and enables the pore diameters of mesopores and micropores to be controlled easily is provided. A method of manufacturing the porous carbon is also provided. The porous carbon is fabricated by mixing a polyamic acid resin 1 as a carbon precursor with magnesium oxide 2 as template particles, heat-treating the mixture in a nitrogen atmosphere at 1000° C. for 1 hour to cause the polyamic acid resin to undergo heat decomposition, and washing the resultant sample with a sulfuric acid solution at a concentration of 1 mol/L to dissolve MgO away.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: October 13, 2015
    Assignee: TOYO TANSO CO., LTD.
    Inventor: Takahiro Morishita
  • Patent number: 9147873
    Abstract: A method for producing an amorphous carbon material for a negative electrode of a lithium-ion secondary battery includes the steps of; pulverizing and classifying a raw coke composition obtained from a heavy-oil composition undergone coking by delayed coking process to obtain powder of the raw coke composition, the raw coke composition having a H/C atomic ratio that is a ratio of hydrogen atoms H and carbon atoms C of 0.30 to 0.50 and having a micro-strength of 7 to 17 mass %; giving compressive stress and shear stress to the powder of the raw coke composition to obtain a carbonized composition precursor; and heating the carbonized composition precursor under an inert atmosphere at a temperature from 900° C. to 1,500° C. so that a size of a crystallite Lc(002) is in a range of 2 nm to 8 nm, the size being calculated from a (002) diffraction line obtained by X-ray wide-angle diffractometry.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: September 29, 2015
    Assignees: JX NIPPON OIL & ENERGY CORPORATION, TODA KOGYO CORP.
    Inventors: Takashi Suzuki, Noriyo Ishimaru, Takashi Oyama, Tamotsu Tano, Toshiyuki Oda, Ippei Fujinaga, Tomoaki Urai, Seiji Okazaki, Katsuaki Kurata, Toshiaki Hiramoto, Akino Sato, Wataru Oda
  • Patent number: 9139439
    Abstract: The present invention provides a process for the preparation of graphene or graphene-like fragments of another layered structure, said process comprising the step of mixing and grinding graphite or said other layered structure with at least one ionic liquid. The invention also provides the use of grinding in ionic liquids in such a process and products formed or formable by such methods.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: September 22, 2015
    Assignee: UNIVERSITY OF ULSTER
    Inventors: Pagona Papakonstantinou, Naigui Shang
  • Patent number: 9133581
    Abstract: Non-cementitious compositions and products are provided. The compositions of the invention include a carbonate additive comprising vaterite such as reactive vaterite. Additional aspects of the invention include methods of making and using the non-cementitious compositions and products.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: September 15, 2015
    Assignee: Calera Corporation
    Inventors: Martin Devenney, Miguel Fernandez, Samuel O Morgan
  • Patent number: 9133407
    Abstract: Systems and process for volatile degradation removal from amine plant wash water are provided. The systems and processes include a separation device disposed within a water circulation loop and configured to continuously remove at least a portion of the volatile degradation products from the wash solutions. The separation device can be configured for stripping, distillation, and/or extraction of the volatile degradation products from at least a fraction of the spent wash water. Optionally, a chemical agent can be reacted with the volatile degradation products to form heat stable salts for subsequent removal.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: September 15, 2015
    Assignee: ALSTOM Technology Ltd
    Inventors: Peter Ulrich Koss, Stephen Alan Bedell
  • Patent number: 9126146
    Abstract: A photocatalyst is provided that comprises activated carbon produced from date pits, impregnated with TiO2. The activated carbon can have a porous surface that can attract and trap pollutants flowing in air or water. The photocatalyst can be made by a method that includes preparing activated carbon by calcining date pits to form a precursor material, and then impregnating the precursor material with titanium dioxide.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: September 8, 2015
    Assignee: The National Titanium Dioxide Co. Ltd. (CRISTAL)
    Inventors: Yousef Saleh Al-Zeghayer, Sami M. Bashir, Ahmed V. Yaser, Hassan M. El Dekki, Waheed A. Al-Masry, Fadi M. Trabzuni
  • Patent number: 9126834
    Abstract: A hydrogen storage material has been developed that comprises a metal hydride material embedded into a carbon microstructure that generally exhibits a greater bulk thermal conductivity than the surrounding bulk metal hydride material.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: September 8, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Wen Li, Adam F. Gross, Alan J. Jacobsen, John J. Vajo
  • Patent number: 9126837
    Abstract: A method for fabricating a continuous vapor grown carbon fiber, comprising: (a) providing a substrate which has a catalyst on its surface; (b) placing said substrate in a furnace; (c) loading said furnace with hydrogen, ammonia, or combinations thereof; (d) adjusting a temperature of said furnace to 400° C. to 900° C. to proceed heat treatment for 10 minutes to 2 hours; (e) adding a carbon-containing compound into said furnace; (f) adjusting the ratio of said carbon-containing compound and said hydrogen, ammonia, or combinations thereof; (g) adjusting the temperature of said furnace to 500° C. to 1200° C. to crack said carbon-containing compound, and thereby form a carbon fiber.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: September 8, 2015
    Assignee: National Cheng Kung University
    Inventor: Jyh-Ming Ting
  • Patent number: 9121606
    Abstract: A method in which a parent hydrocarbon-rich material is processed so as to produce both a carbon-rich solid material that has a higher carbon to hydrogen ratio than that of the parent material and a carbon-deficient combustible gas that has a lower carbon to hydrogen ratio than the parent material. In the process, the material is activated by exposing it to a hot gas stream having elevated levels of one or both of carbon dioxide and water vapor. The combustible gas is combusted to produce heat. At least about 80% of the heat is used in one or more endothermic steps that include drying coal or biomass.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: September 1, 2015
    Inventor: Srivats Srinivasachar
  • Patent number: 9114358
    Abstract: An acid-impregnated activated carbon matrix is formed from a carbonaceous material by the addition of a mineral acid, and may be used to chemisorb ammonia from a gas stream. The ammonia reacts with the acid to form a fertilizer salt. The spent matrix may be used as a fertilizer, or the fertilizer salt may be elutriated from the matrix.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: August 25, 2015
    Assignee: Sulvaris Inc.
    Inventors: Richard L. Johnson, R. Eugene Kuzub, Jin Kwon Tak