Patents Examined by Sunghee Y Gray
  • Patent number: 11561182
    Abstract: A method for detecting the quality of cell culture fluid based on Raman spectral measurement. The method comprises the following steps: collecting cell culture fluid; collecting, processing and analyzing a Raman spectral signal; measuring an original Raman spectral signal of a metabolite in the cell culture fluid using a Raman spectra technique; determining whether the original Raman spectral signal is qualified, and carrying out data signal processing on the qualified original Raman spectral signal to obtain analyzable signals; and then carrying out difference statistical analysis on the analyzable signals to obtain difference signals; carrying out modeling using the difference signals; classifying the difference signals using a support vector machine; and distinguishing the spectral signals of normal and abnormal cell culture fluid to obtain a quality result of the cell culture fluid.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: January 24, 2023
    Assignee: SUZHOU BASECARE MEDICAL DEVICE CO., LTD.
    Inventors: Yilei Zhao, Bo Liang, Liming Xuan, Lingyin Kong, Guoning Liu
  • Patent number: 11555695
    Abstract: An angle detecting device for detecting a bending angle of an element. The element comprises a first connecting portion and a second connecting portion bent relative to the second connecting portion. The angle detecting device comprises a fixing member, a non-contact range finder and a base. The fixing member comprises a first fixing portion and a second fixing portion. The fixing member and the non-contact range finder is mounted on the base. The first fixing portion cooperates with the second fixing portion to fix the first connecting portion. The non-contact range finder faces the second connecting portion to detect a distance between the second connecting portion and the non-contact range finder, and determine whether the distance is within a preset range. An angle detecting method using the above angle detecting device is also provided.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: January 17, 2023
    Assignee: TRIPLE WIN TECHNOLOGY (SHENZHEN) CO. LTD.
    Inventor: Jun-Hui Yu
  • Patent number: 11555689
    Abstract: Methods and systems disclosed herein can measure thin film stacks, such as film on grating and bandgap on grating in semiconductors. For example, the thin film stack may be a 1D film stack, a 2D film on grating, or a 3D film on grating. One or more effective medium dispersion models are created for the film stack. Each effective medium dispersion model can substitute for one or more layers. A thickness of one or more layers can be determined using the effective medium dispersion based scatterometry model. In an instance, three effective medium dispersion based scatterometry models are developed and used to determine thickness of three layers in a film stack.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: January 17, 2023
    Assignee: KLA-Tencor Corporation
    Inventors: Houssam Chouaib, Zhengquan Tan
  • Patent number: 11530913
    Abstract: Methods and systems for estimating a value of a quality metric indicative of one or more performance characteristics of a semiconductor measurement are presented herein. The value of the quality metric is normalized to ensure applicability across a broad range of measurement scenarios. In some embodiments, a value of a quality metric is determined for each measurement sample during measurement inference. In some embodiments, a trained quality metric model is employed to determine the uncertainty of defect classification. In some embodiments, a trained quality metric model is employed to determine the uncertainty of estimated parameters of interest, such as geometric, dispersion, process, and electrical parameters. In some examples, a quality metric is employed as a filter to detect measurement outliers. In some other examples, a quality metric is employed as a trigger to adjust a semiconductor process.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: December 20, 2022
    Assignee: KLA Corporation
    Inventors: Dzmitry Sanko, Min-Yeong Moon, Stilian Ivanov Pandev
  • Patent number: 11525673
    Abstract: A five-degree-of-freedom heterodyne grating interferometry system, comprising a single frequency laser device (1) and an acousto-optic modulator (2); the single frequency laser device (1) emits a single frequency laser, and the single frequency laser is coupled by optical fiber and, after being split, enters the acousto-optic modulator (2) to obtain two linearly polarized lights of different frequencies, one being a reference light, and one being a measurement light; an interferometer lens group (3) and a measurement grating (4), used for forming the reference light and the measurement light into a measurement interference signal and a compensation interference signal; and multiple optical fiber bundles (5), respectively receiving the measurement interference signal and the compensation interference signal, each optical fiber bundle (5) having multiple multimode optical fibers respectively receiving signals at different positions on the same plane.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: December 13, 2022
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Yu Zhu, Ming Zhang, Leijie Wang, Weinan Ye, Fuzhong Yang, Yizhou Xia, Xin Li
  • Patent number: 11519857
    Abstract: Disclosed herein are nanostructured plasmonic materials. The nanostructured plasmonic materials can include a first nanostructured layer comprising: a first layer of a first plasmonic material permeated by a first plurality of spaced-apart holes, wherein the first plurality of spaced apart holes comprise a first array; and a second nanostructured layer comprising a second layer of a second plasmonic material permeated by a second plurality of spaced-apart holes, wherein the second plurality of spaced apart holes comprise a second array; wherein the second nanostructured layer is located proximate the first nanostructured layer; and wherein the first principle axis of the first array is rotated at a rotation angle compared to the first principle axis of the second array.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: December 6, 2022
    Assignee: Board of Regents, The University of Texas System
    Inventors: Yuebing Zheng, Zilong Wu
  • Patent number: 11512946
    Abstract: The disclosure provides an improvement to digital fringe projection techniques in which the optimal focal length settings are automatically determined for reconstructing a 3D profile. In a pre-calibration phase, geometric parameters of the system are calibrated using a few discrete focal length settings. These discretely calibrated geometric parameters are fitted onto a continuous function model. In a 3D autofocusing phase, a set of optimal focal length settings for a scene are determined using a 2D autofocusing technique. Calibrated geometric parameters for each optimal focal length setting are automatically calculated using the continuous geometric parameter model. Finally, a 3D profile of objects in the scene is reconstructed using the calibrated geometric parameters for each optimal focal length setting.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: November 29, 2022
    Assignee: Purdue Research Foundation
    Inventors: Song Zhang, Xiaowei Hu, Guijin Wang
  • Patent number: 11513074
    Abstract: Detection system for detecting at least one extracellular vesicle in a microfluid, including a broadband light source, collimating and focusing optics, a spectrophotometer, a microfluid apparatus and an active sensing element positioned inside the microfluid apparatus, the active sensing element including a substrate, a thin metal layer deposited on the substrate and a dielectric waveguide layer deposited on the metal layer, the light source generating at least one incident beam of light in the near infrared region, the metal layer and the waveguide layer each include a plurality of waveguides, the collimating optics collimates the incident beam of light on the substrate via the coupler, the focusing optics receives at least one reflection of the incident beam of light and provides the reflection to the spectrophotometer, the active sensing element causes surface plasmon waves in the microfluid when the microfluid is injected into the microfluid apparatus and the spectrophotometer detects resonance wavelength
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: November 29, 2022
    Inventors: Atef Shalabney, Marei Sammar, Said Mahajna
  • Patent number: 11513073
    Abstract: A light transmission structure is provided for use, in conjunction with a light source and detector, for selective detection of biomolecule interactions and/or absorption of infrared light. The light transmission structure includes a substrate having a bottom surface adapted to couple the light source and detector to the light transmission structure, a coupling and enhancing layer disposed on at least a portion of an upper surface of the substrate, a first near-critical angle anti-reflective coating (NCA-ARC) layer disposed on at least a portion of an upper surface of the coupling and enhancing layer, and a second NCA-ARC layer disposed on at least a portion of an upper surface of the first NCA-ARC layer. An upper surface of the second NCA-ARC layer is functionalized and textured so that transmitted incident light is scattered out of the light transmission structure. A difference in refractive index between adjacent NCA-ARC layers is less than about 0.01.
    Type: Grant
    Filed: April 7, 2021
    Date of Patent: November 29, 2022
    Inventor: James I. Scholtz
  • Patent number: 11499912
    Abstract: In order to avoid friendly fire incidents in the combat theater, novel covert identification systems and methods of identifying friendly forces are provided. The systems include at least a spectroscopic imaging device and a marker that interact with each other by using a synchronized, predetermined filter tuning sequence. The filter tuning sequence enables interacted photons to wavelength hop according to the predetermined tuning sequence. As a result, the covert identification system allows friendly forces to clearly identify each while avoiding detection by enemy forces that employ conventional broadband and night vision sensors.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: November 15, 2022
    Assignee: CHEMIMAGE CORPORATION
    Inventors: Patrick J. Treado, David W. Caudle, Matthew P. Nelson, Shawna Tazik
  • Patent number: 11493441
    Abstract: The present disclosure describes a flow cell, a read head, and a skid attachment for measuring real-time molecular weight for downstream process control. In an embodiment, the flow cell comprises a hollow cylindrical tube, an inlet flange connected to an inlet of the tube, and an outlet flange connected to an outlet of the tube. In an embodiment, the read head comprises at least one push rod, at least two line contacts, where the at least one push rod is configured to push an outer side wall of a flow cell against the at least two line contacts. In an embodiment, the skid attachment comprises a plurality of arms connected to an enclosure configured to house at least a multi-angle light scattering instrument comprising a read head.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: November 8, 2022
    Assignee: WYATT TECHNOLOGY CORPORATION
    Inventors: Drew Amaral, Vincent Hsieh
  • Patent number: 11486825
    Abstract: Systems, devices, and methods for analysis of biological matter using plasmon resonance are provided. A plasmonic device can include a sensing platform, a base, and a fluidic module. The sensing platform can include a sensor disposed on a prism, which can be disposed on a substrate. The substrate can further include a light source and a refraction detector.
    Type: Grant
    Filed: June 7, 2022
    Date of Patent: November 1, 2022
    Assignee: THE FLORIDA INTERNATIONAL UNIVERSITY BOARD OF TRUSTEES
    Inventors: Maedeh Mozneb, Anthony J. McGoron, Chenzhong Li
  • Patent number: 11486827
    Abstract: A droplet sensor includes an optical cover having an ellipsoid surface that is a portion of a spheroid, a light source disposed at or in proximity to a first focal point of the ellipsoid surface, and a light detector disposed at or in proximity to a second focal point of the ellipsoid surface. The ellipsoid surface includes an effective detection area configured to reflect light emitted by the light source toward the light detector, and an amount of light reflected by the effective detection area changes in accordance with adhesion of droplets on the ellipsoid surface. The optical cover includes a space having a hemispherical surface, the space being centered at the second focal point. The hemispherical surface includes a transmission scattering surface on a region that receives the light reflected by the effective detection area.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: November 1, 2022
    Assignee: MITSUMI ELECTRIC CO., LTD.
    Inventor: Hideo Kurosawa
  • Patent number: 11473907
    Abstract: There is provided a method for manufacturing a semiconductor structure, including: preparing a plate-like semiconductor structure; and inspecting the semiconductor structure, the inspection of the semiconductor further including: performing a measurement of irradiating a surface of the semiconductor structure with a light from a light source in an oblique direction to the surface, and detecting a reflected light reflected or scattered by the surface by a two-dimensional detector, at a plurality of locations within at least a predetermined range of the surface of the semiconductor structure, to acquire a reflected light distribution that is a distribution of an integrated value obtained by integrating intensity of the reflected light measured at the plurality of locations, with respect to a position at the detector; and fitting the reflected light distribution by a multiple Gaussian function obtained by adding at least a first Gaussian function and a second Gaussian function distributed more widely than the fi
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: October 18, 2022
    Assignees: SCIOCS COMPANY LIMITED, SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Fumimasa Horikiri
  • Patent number: 11466316
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument for biological or chemical analyses. The pulsed laser may produce sub-100-ps optical pulses at a repetition rate commensurate with electronic data-acquisition rates. The optical pulses may excite samples in reaction chambers of the instrument, and be used to generate a reference clock for operating signal-acquisition and signal-processing electronics of the instrument.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: October 11, 2022
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife
  • Patent number: 11402268
    Abstract: An aspect of the invention provides a method for determining at least one internal quality attribute of an article (102) of agricultural produce.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: August 2, 2022
    Assignee: The New Zealand Institute for Plant and Food Research Limited
    Inventors: Zhe Sun, Nathaniel Kenneth Tomer, Vincent Andrew McGlone, Rainer Künnemeyer
  • Patent number: 11385167
    Abstract: An ellipsometer includes a focusing system that uses an image of the measurement spot to determine a best focal position for the ellipsometer. The focus signal is produced by splitting off the ellipsometer measurement spot before the signal is analyzed by a polarizer thereby avoiding imagining the spot with a modulated intensity. The focus signal is imaged on a sensor array and based on the position of the spot on the sensor array, the focal position of the ellipsometer may be determined. A single image may be used to determine the focal position of the ellipsometer permitting a real time focus position measurement.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: July 12, 2022
    Assignee: Onto Innovation Inc.
    Inventor: John F. Lesoine
  • Patent number: 11382324
    Abstract: A discrete and safe automated insect monitoring system includes a housing, an interior chamber within the housing, and a light source arranged within the housing to illuminate at least a portion of a floor surface of the interior chamber. A multi-pixel optical sensor is arranged within the housing so that a field of view of the sensor comprehends a substantial portion of the floor surface. A processing circuit arranged within the housing receives optical data from the multi-pixel optical sensor, analyzes the optical data to detect the intrusion of an insect or other object into the interior chamber by comparing most recently received optical data to previously received optical data, and generates an indication in response to detecting the intrusion of an insect or other object. Detection and/or classification results can be wirelessly forwarded to another device, to alert appropriate personnel.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: July 12, 2022
    Assignee: Delta Five, LLC
    Inventors: Jason André Janét, William Stockton Howell, Stephen Paul Land, Robert W. Winston, III, Lisa Ann Lyons
  • Patent number: 11378392
    Abstract: In order to provide a means to uniquely estimate the attitude in a wider range of angles to thereby realize a more accurate attitude estimate, a planar marker is provided. The planar marker includes a planar visual marker having a two-dimensional pattern code and at least two attitude inversion detection patterns Fx and Fy each consisting of a transparent cylindrical body having a pattern on the side face within the range of 180 degrees around the central axis ra and being provided so as to be orthogonal to each other on the same plane as that of planar visual marker. A marker is provided that includes at least one attitude inversion detection pattern. The attitude inversion detection pattern consists of the planar visual marker and a transparent spherical body having a pattern on a hemispherical surface and is provided on the same plane as that of the planar visual marker.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: July 5, 2022
    Assignee: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventor: Hideyuki Tanaka
  • Patent number: 11378453
    Abstract: A CubeSat compatible spectrometer including a slit having a first length and first width; a diffraction grating; and a two dimensional focal plane array electromagnetically coupled to the diffraction grating. The 2D focal plane array includes an array of pixels including a plurality of sets of pixels. Diffraction of electromagnetic radiation transmitted through the slit by the diffraction grating forms a plurality of beams, each of the beams comprising a different one of the bands of the wavelengths in the electromagnetic radiation, and each of the beams transmitted onto a different one of the sets of the pixels.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: July 5, 2022
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventor: Thomas S. Pagano