Patents Examined by Telly Green
  • Patent number: 9705105
    Abstract: An electrical component (40) and a substrate (100) constitute at least a portion of an electrical device. At least one surface of the substrate (100) is formed of an insulator. A conductor (20) is formed on the one surface. The conductor (20) is covered with a sealing film (210). The sealing film (210) is a film having insulation properties. An opening (212) is formed in the sealing film (210). The opening (212) is located on a portion of the conductor (20) when seen in a plan view. The conductor (20) is connected to the electrical component (40) with an anisotropic conductive film (30) interposed therebetween. The anisotropic conductive film (30) overlaps the opening (212), and contains a plurality of metal particles.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: July 11, 2017
    Assignees: PIONEER CORPORATION, TOHOKU PIONEER CORPORATION
    Inventor: Hidetaka Ohazama
  • Patent number: 9698081
    Abstract: Disclosed herein is a package having a first redistribution layer (RDL) disposed on a first semiconductor substrate and a second RDL disposed on a second semiconductor substrate. The first RDL is bonded to the second RDL. The package further includes an insulating film disposed over the second RDL and around the first RDL and the first semiconductor substrate. A conductive element is disposed in the first RDL. A via extends from a top surface of the insulating film, through the first semiconductor substrate to the conductive element, and a spacer is disposed between the first semiconductor substrate and the via. The spacer extends through the first semiconductor substrate.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: July 4, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Ming-Fa Chen, Wen-Ching Tsai
  • Patent number: 9695041
    Abstract: A physical quantity sensor includes a supporting substrate, an acceleration detecting element that is mounted on the supporting substrate, and a sealing substrate that is bonded to the supporting substrate, and seals the acceleration detecting element, in which a notch portion is formed in a portion of a bonded face to the supporting substrate, in the sealing substrate, and a filling material that is configured by a material which is different from a material configuring the sealing substrate, is arranged in the notch portion.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: July 4, 2017
    Assignee: Seiko Epson Corporation
    Inventor: Shinichi Kamisuki
  • Patent number: 9691938
    Abstract: Semiconductor structures and methods for forming those semiconductor structures are disclosed. For example, a p-type or n-type semiconductor structure is disclosed. The semiconductor structure has a polar crystal structure with a growth axis that is substantially parallel to a spontaneous polarization axis of the polar crystal structure. The semiconductor structure changes in composition from a wider band gap (WBG) material to a narrower band gap (NBG) material or from a NBG material to a WBG material along the growth axis to induce p-type or n-type conductivity.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: June 27, 2017
    Assignee: The Silanna Group Pty Ltd
    Inventors: Petar Atanackovic, Matthew Godfrey
  • Patent number: 9691905
    Abstract: A semiconductor device includes a first insulating layer over a substrate, a first metal oxide layer over the first insulating layer, an oxide semiconductor layer over the first metal oxide layer, a second metal oxide layer over the oxide semiconductor layer, a gate insulating layer over the second metal oxide layer, a second insulating layer over the second metal oxide layer, and a gate electrode layer over the gate insulating layer. The gate insulating layer includes a region in contact with a side surface of the gate electrode layer. The second insulating layer includes a region in contact with the gate insulating layer. The oxide semiconductor layer includes first to third regions. The first region includes a region overlapping with the gate electrode layer. The second region, which is between the first and third regions, includes a region overlapping with the gate insulating layer or the second insulating layer.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: June 27, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Daigo Ito, Daisuke Matsubayashi, Masaharu Nagai, Yoshiaki Yamamoto, Takashi Hamada, Yutaka Okazaki, Shinya Sasagawa, Motomu Kurata, Naoto Yamade
  • Patent number: 9691724
    Abstract: Manufacturing method and a multi-chip package, which comprises a conductor pattern and insulation, and, inside the insulation, a first component, the contact terminals of which face towards the conductor pattern and are conductively connected to the conductor pattern. The multi-chip package also comprises inside the insulation a second semiconductor chip, the contact terminals of which face towards the same conductor pattern and are conductively connected through contact elements to this conductor pattern. The semiconductor chips are located in such a way that the first semiconductor chip is located between the second semiconductor chip and the conductor pattern.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: June 27, 2017
    Assignee: GE Embedded Electronics Oy
    Inventors: Antti Iihola, Risto Tuominen
  • Patent number: 9673101
    Abstract: Semiconductor structures and methods of forming such structures are disclosed. In an embodiment, the semiconductor structure comprises a substrate, a dielectric layer, and a plurality of gates, including a first gate and a pair of adjacent gates. The method comprises forming gate caps on the adjacent gates, including etching portions of the gate electrodes in the adjacent gates to recess the gate electrodes therein, and forming the caps above the recessed gate electrodes. Conductive metal trenches are formed in the dielectric layer, on the sides of the first gate; and after forming the trenches, a contact is formed over the gate electrode of the first gate and over and on one of the conductive trenches. In embodiments, the contact is a gate contact, and in other embodiments, the contact is a non-gate contact.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: June 6, 2017
    Assignee: International Business Machines Corporation
    Inventors: Injo Ok, Balasubramanian Pranatharthiharan, Soon-Cheon Seo, Charan V. Surisetty
  • Patent number: 9666578
    Abstract: A technique relates to semiconductors. A bottom terminal of a transistor and bottom plate of a capacitor are positioned on the substrate. A spacer is arranged on the bottom terminal of the transistor. A transistor channel region extends vertically from the bottom terminal through the spacer to contact a top terminal of the transistor. A capacitor channel region extends vertically from the bottom plate to contact a top plate of the capacitor. A first gate stack is arranged along sidewalls of the transistor channel region and is in contact with the spacer. A second gate stack is arranged along sidewalls of the capacitor channel region and is disposed on the bottom plate. A distance from a bottom of the first gate stack to a top of the bottom terminal is greater than a distance from a bottom of the second gate stack to a top of the bottom plate.
    Type: Grant
    Filed: April 12, 2016
    Date of Patent: May 30, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Brent A. Anderson
  • Patent number: 9663348
    Abstract: An embodiment of a microelectromechanical systems (MEMS) device is provided, which includes a substrate; a proof mass positioned in space above a surface of the substrate, wherein the proof mass is configured to pivot on a rotational axis parallel to the substrate; an anchor structure that includes two or more separated anchors mounted to the surface of the substrate, wherein the anchor structure is aligned with the rotational axis; and an isolation sub-frame structure that surrounds the anchor structure and is flexibly connected to each of the two or more separated anchors of the anchor structure, where the proof mass is flexibly connected to the isolation sub-frame structure.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: May 30, 2017
    Assignee: NXP USA, Inc.
    Inventor: Aaron A. Geisberger
  • Patent number: 9666521
    Abstract: An interconnection component includes a semiconductor material layer having a first surface and a second surface opposite the first surface and spaced apart in a first direction. At least two metalized vias extend through the semiconductor material layer. A first pair of the at least two metalized vias are spaced apart from each other in a second direction orthogonal to the first direction. A first insulating via in the semiconductor layer extends from the first surface toward the second surface. The insulating via is positioned such that a geometric center of the insulating via is between two planes that are orthogonal to the second direction and that pass through each of the first pair of the at least two metalized vias. A dielectric material at least partially fills the first insulating via or at least partially encloses a void in the insulating via.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: May 30, 2017
    Assignee: Invensas Corporation
    Inventors: Cyprian Emeka Uzoh, Zhuowen Sun
  • Patent number: 9666775
    Abstract: A light emitting device package including a package body including a recess which is provided with a bottom face and a plurality of inner walls surrounding the bottom face, the plurality of inner walls including a first inner wall and a second inner wall, which are opposing walls; a lead frame including a first portion disposed on the bottom face of the package body and at least one second portion extending from the first portion, the first portion including a planar upper surface exposed at the bottom face and a planar lowermost surface positioned opposite to the planar upper surface; a light emitting element provided on the planar upper surface of the first portion; and a transparent material provided in the recess of the package body to cover the light emitting element.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: May 30, 2017
    Assignee: LG INNOTEK CO., LTD.
    Inventors: Sung Min Kong, Choong Youl Kim, Hee Seok Choi
  • Patent number: 9660200
    Abstract: An organic light-emitting device includes a first electrode, a second electrode disposed opposite to the first electrode, and an organic layer disposed between the first electrode and the second electrode and including an emission layer. The emission layer includes at least one first light-emitting material represented by Formula 1 and at least one second light-emitting material represented by Formula 2: and X1 to X12, Ar1, M, X21 to X24, A, B, R1 to R12, R21, R22, a1, a2, n, L, M in Formulae 1 and 2 are defined as in the specification.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: May 23, 2017
    Assignees: SAMSUNG DISPLAY CO., LTD., DUK SAN NEOLUX CO., LTD.
    Inventors: Mi-Kyung Kim, Chang-Woong Chu, Kwan-Hee Lee, Se-Hun Kim, Hwan-Hee Cho, Dae-Yup Shin, Jung-Hwan Park, Bum-Sung Lee
  • Patent number: 9659862
    Abstract: Methods, apparatus, and systems for fabricating and using a semiconductor device comprising a first conductive element; a second conductive element; and an e-fuse comprising a first region comprising a conductive oxide of a first metal; and a second region comprising a second metal, wherein an oxide of the second metal is resistive; wherein the e-fuse is electrically connected to both the first conductive element and the second conductive element.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: May 23, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Suraj Kumar Patil, Min-Hwa Chi
  • Patent number: 9659897
    Abstract: A system and a method of manufacture thereof of integrated circuit packaging system, including: a pillar; a conductive buildup attached to the pillar; and a molded body encapsulating the conductive buildup, the pillar extending out of the molded body.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: May 23, 2017
    Assignee: STATS ChipPAC Pte. Ltd.
    Inventors: Zigmund Ramirez Camacho, Emmanuel Espiritu, Bartholomew Liao Chung Foh, Dao Nguyen Phu Cuong, Jeffrey David Punzalan
  • Patent number: 9659947
    Abstract: Devices and methods for forming a device are presented. The method includes providing a substrate prepared with a cell area separated by other active areas by isolation regions. First and second lower sub-gates of first and second transistors are formed in the cell area. A common upper sub-gate of the first and second transistors is formed. The common upper sub-gate and first and second lower sub-gates are separated by an intergate dielectric layer and the common upper sub-gate surrounds the first and second lower sub-gates.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: May 23, 2017
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Chandrasekar Venkataramani, Qiuji Zhao, Koe Sun Pak, Bai Yen Nguyen, Yoke Weng Tam
  • Patent number: 9659946
    Abstract: A memory device having a pair of conductive floating gates with inner sidewalls facing each other, and disposed over and insulated from a substrate of first conductivity type. A pair of spaced apart conductive control gates each disposed over and insulated from one of the floating gates, and each including inner sidewalls facing each other. A pair of first spacers of insulation material extending along control gate inner sidewalls and over the floating gates. The floating gate inner sidewalls are aligned with side surfaces of the first spacers. A pair of second spacers of insulation material each extend along one of the first spacers and along one of the floating gate inner sidewalls. A trench formed into the substrate having sidewalls aligned with side surfaces of the second spacers. Silicon carbon disposed in the trench. Material implanted into the silicon carbon forming a first region having a second conductivity type.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: May 23, 2017
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Chien-Sheng Su, Jeng-Wei Yang, Yueh-Hsin Chen
  • Patent number: 9653304
    Abstract: A method of manufacturing a semiconductor device includes forming a first gate member on a semiconductor substrate through a gate insulating film, forming a spacer on the first gate member, flattening a surface of the spacer, forming a first gate by partially etching the first gate member using the spacer as a mask, forming a second gate member so as to cover the first gate and the spacer having the flattened surface, forming a first insulating film on a surface of the second gate member, and forming a second gate by causing the second gate member to retreat while removing the first insulating film by etching.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: May 16, 2017
    Assignee: LAPIS SEMICONDUCTOR CO., LTD.
    Inventor: Akira Chiba
  • Patent number: 9646894
    Abstract: Embodiments of mechanisms for forming a die package with multiple packaged dies on a package substrate use an interconnect substrate to provide electrical connections between dies and the package substrate. The usage of the interconnect substrate enables cost reduction because it is cheaper to make than an interposer with through silicon vias (TSVs). The interconnect substrate also enables dies with different sizes of bump structures to be packaged in the same die package.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: May 9, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hua Chen, Chen-Shien Chen, Ching-Wen Hsiao
  • Patent number: 9646825
    Abstract: The invention relates to a method for fabricating a composite structure comprising a layer to be separated by irradiation, the method comprising the formation of a stack containing: a support substrate formed from a material that is at least partially transparent at a determined wavelength; a layer to be separated; and a separation layer interposed between the support substrate and the layer to be separated, the separation layer being adapted to be separated by exfoliation under the action of radiation having a wavelength corresponding to the determined wavelength. Furthermore, the method comprises, during the step for forming the composite structure, a treatment step modifying the optical properties in reflection at an interface between the support substrate and the separation layer or on an upper face of the support substrate.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: May 9, 2017
    Assignee: SOITEC
    Inventors: Christophe Figuet, Christophe Gourdel
  • Patent number: 9647245
    Abstract: A flexible organic electroluminescent device is disclosed which includes: a flexible substrate; a buffer layer entirely formed on the flexible substrate; a thin film transistor formed on the buffer layer and configured to include an active layer; a planarization film formed to cover the thin film transistor; an organic light emitting diode formed on the planarization film and configured to include a first electrode, an organic emission layer and a second electrode; and at least one silicon nitride layer formed above the active layer of the thin film transistor but under the planarization film and patterned into a plurality of island patterns.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: May 9, 2017
    Assignee: LG Display Co., Ltd.
    Inventor: Nack Bong Choi