Patents Examined by Teresa M. Arroyo
  • Patent number: 8269355
    Abstract: A semiconductor device such as a field-effect transistor, improved to reduce device resistance, comprises a leadframe which includes a die paddle integral with a first set of leads and a second set of leads that is electrically isolated from the first set, a semiconductor die having its lower surface positioned on, and electrically connected to, the die paddle, and a conductive layer on the upper surface of the die. At least one electrically conductive wire, preferably plural wires, extend laterally across the second surface of the semiconductor die, are in electrical contact with the conductive layer, and interconnect corresponding second leads on opposite sides of the die. The plural wires may be welded to leads in succession by alternate ball and wedge bonds on each lead. The conductive layer may be an aluminized layer on which is formed a thin layer a solderable material, such as tin. A solder is deposited on the tin layer, enmeshing the wires.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: September 18, 2012
    Assignee: Linear Technology Corporation
    Inventor: David Alan Pruitt
  • Patent number: 8264002
    Abstract: An AlN buffer layer, an undoped GaN layer, an undoped AlGaN layer, a p-type GaN layer and a heavily doped p-type GaN layer are formed in this order. A gate electrode forms an Ohmic contact with the heavily doped p-type GaN layer. A source electrode and a drain electrode are provided on the undoped AlGaN layer. A pn junction is formed in a gate region by a two dimensional electron gas generated at an interface between the undoped AlGaN layer and the undoped GaN layer and the p-type GaN layer, so that a gate voltage can be increased.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: September 11, 2012
    Assignee: Panasonic Corporation
    Inventors: Masahiro Hikita, Tetsuzo Ueda, Manabu Yanagihara, Yasuhiro Uemoto, Tsuyoshi Tanaka
  • Patent number: 8264090
    Abstract: A semiconductor device includes a circuit block formed in a peripheral edge portion of a semiconductor chip, a circuit block pad formed on the circuit block providing an electrical connection for said circuit block, and a bonding pad laterally offset from the circuit block and the circuit block pad, the bonding pad being electrically connected to the circuit block pad and electrically connected to a lead frame by a bonding wire, the laterally offset bonding pad thereby functioning as a substitute wire bonding pad for the circuit block.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: September 11, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Tetsuya Katou
  • Patent number: 8258622
    Abstract: Provided are a power device package coupled to a heat sink using a bolt and a semiconductor package mold for fabricating the same. The power device package includes: a substrate; at least one power device mounted on the substrate; a mold member sealing the substrate and the power device; and at least one bushing member fixed to the mold member to provide a through hole for a bolt member for coupling a heat sink to the mold member.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: September 4, 2012
    Assignee: Fairchild Korea Semiconductor, Ltd.
    Inventors: Keun-hyuk Lee, Seung-won Lim, Sung-min Park
  • Patent number: 8253230
    Abstract: Pass-through 3D interconnects and microelectronic dies and systems of stacked dies that include such interconnects to disable electrical connections are disclosed herein. In one embodiment, a system of stacked dies includes a first microelectronic die having a backside, an interconnect extending through the first die to the backside, an integrated circuit electrically coupled to the interconnect, and a first electrostatic discharge (ESD) device electrically isolated from the interconnect. A second microelectronic die has a front side coupled to the backside of the first die, a metal contact at the front side electrically coupled to the interconnect, and a second ESD device electrically coupled to the metal contact. In another embodiment, the first die further includes a substrate carrying the integrated circuit and the first ESD device, and the interconnect is positioned in the substrate to disable an electrical connection between the first ESD device and the interconnect.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: August 28, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Jeffery W. Janzen, Russell D. Slifer, legal representative, Michael Chaine, Kyle K. Kirby, William M. Hiatt
  • Patent number: 8253241
    Abstract: An electronic module. One embodiment includes a carrier. A first transistor is attached to the carrier. A second transistor is attached to the carrier. A first connection element includes a first planar region. The first connection element electrically connects the first transistor to the carrier. A second connection element includes a second planar region. The second connection element electrically connects the second transistor to the carrier. In one embodiment, a distance between the first planar region and the second planar region is smaller than 100 ?m.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: August 28, 2012
    Assignee: Infineon Technologies AG
    Inventors: Stefan Landau, Erwin Huber, Josef Hoeglauer, Joachim Mahler, Tino Karczeweski
  • Patent number: 8253248
    Abstract: A semiconductor device having conductive bumps and a fabrication method thereof is proposed. The fabrication method includes the steps of forming a first metallic layer on a substrate having solder pads and a passivation layer formed thereon, and electrically connecting it to the solder pads; applying a second covering layer over exposed parts of the first metallic layer; subsequently, forming a second metallic layer on the second covering layer, and electrically connecting it to the exposed parts of the first metallic layer; applying a third covering layer, and forming openings for exposing parts of the second metallic layer to form thereon a conductive bump having a metallic standoff and a solder material. The covering layers and the metallic layers can provide a buffering effect for effectively absorbing the thermal stress imposed on the conductive bumps to prevent delamination caused by the UBM layers.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: August 28, 2012
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chun-Chi Ke, Chien-Ping Huang
  • Patent number: 8247891
    Abstract: A chip package structure including a substrate, at least one chip, a plurality of leads, a heat dissipation device, a molding compound, and at least one insulating sheet is provided. The chip is disposed on the substrate. The leads are electrically connected to the substrate. The molding compound having a top surface encapsulates the chip, the substrate, and a portion of the leads. The heat dissipation device is disposed on the top surface of the molding compound. The insulating sheet disposed between the heat dissipation device and at least one of the leads has a bending line dividing the insulating sheet into a main body disposed on the molding compound and a bending portion extending from the main body.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: August 21, 2012
    Assignee: Cyntec Co., Ltd.
    Inventors: Chau-Chun Wen, Da-Jung Chen, Bau-Ru Lu, Chun-Hsien Lu
  • Patent number: 8242597
    Abstract: A semiconductor device, includes a semiconductor substrate; and a solder bump part, which is formed on the semiconductor substrate and in which no grain boundary extends equal to or over ? of a diameter dimension of said solder bump part from an outer circumferential surface between an end of a connection part with the semiconductor substrate and a lateral portion.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: August 14, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tadashi Iijima
  • Patent number: 8237285
    Abstract: Semiconductor device includes semiconductor substrate, through hole having first opening and second opening, and including an expansion portion so that an opening area of first opening is greater than an opening area of lowermost portion of expansion portion, first insulating layer, and having an opening which communicates with through hole and has an area smaller than opening area of first opening, first wiring layer provided on first insulating layer, second insulating layer provided on expansion portion of through hole, and to cover first opening and an inner wall surface of through hole, second insulating layer having an opening communicating with opening of first insulating layer so as to expose first wiring layer through opening of first insulating layer, and second wiring layer provided on second insulating layer to extend from inside of through hole, and being connected to first wiring layer via openings of first and second insulating layers.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: August 7, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazumasa Tanida, Mie Matsuo, Masahiro Sekiguchi, Chiaki Takubo
  • Patent number: 8237250
    Abstract: The advanced quad flat non-leaded package structure includes a carrier, a chip, a plurality of wires, and a molding compound. The carrier includes a die pad and a plurality of leads. The leads include first leads disposed around the die pad, second leads disposed around the first leads and at least an embedded lead portion between the first leads and the second leads. The wires are disposed between the chip, the first leads and the embedded lead portion. The advanced quad flat non-leaded package structures designed with the embedded lead portion can provide better electrical connection.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: August 7, 2012
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Pao-Huei Chang Chien, Ping-Cheng Hu, Po-Shing Chiang, Wei-Lun Cheng
  • Patent number: 8227908
    Abstract: An electronic device and manufacturing thereof. One embodiment provides a carrier and multiple contact elements. The carrier defines a first plane. A power semiconductor chip is attached to the carrier. A body is formed of an electrically insulating material covering the power semiconductor chip. The body defines a second plane parallel to the first plane and side faces extends from the first plane to the second plane. At least one of the multiple contact elements has a cross section in a direction orthogonal to the first plane that is longer than 60% of the distance between the first plane and the second plane.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: July 24, 2012
    Assignee: Infineon Technologies AG
    Inventors: Ralf Otremba, Josef Hoeglauer
  • Patent number: 8198714
    Abstract: Aspects of a method and system for configuring a transformer embedded in a multi-layer integrated circuit package are provided. In this regard, a windings ratio of a transformer embedded in a multi-layer IC package bonded to an IC may be configured, via logic, circuitry, and/or code in the IC, based on signal levels at one or more terminals of the transformer. The transformer may comprise a plurality of inductive loops fabricated in transmission line media. The integrated circuit may be flip-chip bonded to the multi-layer package. The IC may comprise a signal strength indicator enabled to measure signal levels input to or output by the transformer. The windings ratio may be configured via one or more switches in the IC and/or in the multi-layer package. The IC and/or the multi-layer package may comprise ferromagnetic material which may improve magnetic coupling of the transformer.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: June 12, 2012
    Assignee: Broadcom Corporation
    Inventor: Ahmadreza Rofougaran
  • Patent number: 8198733
    Abstract: A semiconductor device includes a conductive pattern formed on a substrate, a conductive land formed to come into contact with at least part of the top surface of the conductive pattern, and a conductive section formed on the conductive land. The conductive section is electrically connected through the conductive land to the conductive pattern.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: June 12, 2012
    Assignee: Panasonic Corporation
    Inventor: Masaki Tamaru
  • Patent number: 8198734
    Abstract: A silicon-on-insulator (SOI) structure is provided for forming through vias in a silicon wafer carrier structure without backside lithography. The SOI structure includes the silicon wafer carrier structure bonded to a silicon substrate structure with a layer of buried oxide and a layer of nitride separating these silicon structures. Vias are formed in the silicon carrier structure and through the oxide layer to the nitride layer and the walls of the via are passivated. The vias are filled with a filler material of either polysilicon or a conductive material. The substrate structure is then etched back to the nitride layer and the nitride layer is etched back to the filler material. Where the filler material is polysilicon, the polysilicon is etched away forming an open via to the top surface of the carrier wafer structure. The via is then backfilled with conductive material.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: June 12, 2012
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Paul S. Andry, Edmund J. Sprogis, Cornelia K. Tsang
  • Patent number: 8197203
    Abstract: A diffuser for carrying air flow to an evaporator in an air conditioning system of an automotive vehicle includes an inlet and an outlet, a wall extending between the inlet and the outlet, and a guide vane, extending at least partially between the inlet and the outlet, spaced from the wall by a containing a control region whose area ratio changes along a length of the guide vane.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: June 12, 2012
    Assignee: Automotive Components Holdings, LLC
    Inventors: Vivek A. Jairazbhoy, Mehran Shahabi, Todd R. Barnhart
  • Patent number: 8198728
    Abstract: A semiconductor device includes a supporting base whereupon an electrode terminal is placed; an intermediate member mounted on said supporting base; a semiconductor element, a portion thereof being supported with said intermediate member, and placed on said supporting base; and a convex-shaped member which corresponds to the electrode terminal of said semiconductor element and placed on said supporting base or said intermediate member; wherein the electrode terminal of said semiconductor element and the electrode terminal of said supporting base are connected with a bonding wire.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: June 12, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Takao Nishimura
  • Patent number: 8193614
    Abstract: A semiconductor device provided on a semiconductor substrate includes an element region including an element, a moisture-resistant frame surrounding the element region, an insulating layer provided between the moisture-resistant frame and an outer peripheral edge of the semiconductor device and on the semiconductor substrate, a first metal line extending along the outer peripheral edge and provided in the insulating layer, and a groove provided in the insulating layer.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: June 5, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Tomoyuki Yamada, Fumio Ushida, Shigetoshi Takeda, Tomoharu Awaya, Koji Banno, Takayoshi Minami
  • Patent number: 8174011
    Abstract: In a positional offset measurement pattern unit formed in an insulating layer, a first interconnection is formed in the insulating layer. A via-plug is formed in the insulating layer so as to be electrically connected to the first interconnection. A second interconnection is formed in the insulating layer at substantially the same level as the first interconnection so as to be spaced from the first interconnection by a given distance. A voltage is applied between the first and second interconnections to measure a relative positional offset amount between the via-plug and the second interconnection.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: May 8, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Daisuke Oshida
  • Patent number: 8154134
    Abstract: A packaged electronic device includes a leadframe including a die pad, a first, second, and third lead pin surrounding the die pad. An IC die is assembled in a face-up configuration on the lead frame. The IC die includes a substrate having an active top surface and a bottom surface, wherein the top surface includes integrated circuitry including an input pad, an output pad, a power supply pad, and a ground pad, and a plurality of through-substrate vias (TSVs) including an electrically conductive filler material and a dielectric liner. The TSVs couple the input pad to the first lead pin, the output pad to the second lead pin, the power supply pad to a third lead pin or a portion of the die pad. A fourth TSV couples pads coupled to the ground node to the die pad or a portion of the die pad for a split die pad.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: April 10, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Thomas D. Bonifield, Gary P. Morrison, Rajiv Dunne, Satyendra S. Chauhan, Masood Murtuza