Patents Examined by Tony Tran
  • Patent number: 11189606
    Abstract: A light emitting diode (LED) panel is provided. The LED panel includes a thin-film transistor (TFT) backplane which includes a plurality of LED bonding areas, and a plurality of LEDs which are respectively bonded to the plurality of LED bonding areas, wherein the plurality of LED bonding areas are formed to have different heights on the TFT backplane according to an LED type bonded thereto, and wherein a relatively thin LED from among the plurality of LEDs is bonded to an LED bonding area of a relatively low height from among the plurality of LED bonding areas.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: November 30, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sangmin Shin, Hoseop Lee, Sangyoung Park
  • Patent number: 11168188
    Abstract: The process to fabricate a polymer film includes baking a cyclic olefin copolymer (COC) and a silicon wafer at a predefined temperature. The process also includes attaching a plastic tape frame to the silicon wafer and submerging the COC and the plastic tape frame within water allowing one or more ultra-thin sheets of COC film to be peeled off.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: November 9, 2021
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Kevin L. Denis, Edward J. Wollack
  • Patent number: 11164796
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a work function material around a first semiconductor layer in a first region and a second semiconductor layer in a second region. The method also includes forming a first gate electrode material over the work function material. The method also includes removing the first gate electrode material in the first region. The method also includes forming a second gate electrode material over the work function material in the first region.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: November 2, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Liang Cheng, Ziwei Fang
  • Patent number: 11158544
    Abstract: A method for forming a semiconductor device includes forming a structure having at least a first nanosheet stack for a first device, a second nanosheet stack for a second device and disposed over the first nanosheet stack, a disposable gate structure, and a gate spacer. The disposable gate structure and sacrificial layers of the first and second nanosheet stacks are removed thereby forming a plurality of cavities. A conformal gate dielectric layer is formed in the plurality cavities and surrounding at least portions of the first and second nanosheet stacks. A first conformal work function layer is formed in contact with the gate dielectric layer. Portions of the first conformal work function layer are removed without using a mask from at least the second nanosheet stack. A second conformal work function layer is formed on exposed portions of the gate dielectric layer.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: October 26, 2021
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Juntao Li, Ruilong Xie, Chanro Park
  • Patent number: 11158541
    Abstract: A method of processing a wafer with a metal film to divide the wafer into individual device chips along a grid of projected dicing lines where the mechanical strength of the wafer is reduced. The method includes the steps of sticking a holding tape to a face side of the wafer, holding the wafer while a reverse side of the wafer with the metal film thereon is being exposed, and drawing the wafer under suction along the projected dicing lines to fracture the wafer along the projected dicing lines while the reverse side of the wafer is being cooled in its entirety.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: October 26, 2021
    Assignee: DISCO CORPORATION
    Inventor: Jinyan Zhao
  • Patent number: 11152407
    Abstract: An image sensor includes a first column line and a second column line configured to extend in a first direction, a plurality of pixel groups configured to connect to the first column line or the second column line and to comprise a plurality of pixels in each of the plurality of pixel groups, a bias circuit configured to comprise a first current circuit and a second current circuit configured to output different bias currents in a first operational mode, and a switching circuit configured to connect the first column line to the first current circuit and connect the second column line to the second current circuit during a first time period, and to connect the first column line to the second current circuit and connect the second column line to the first current circuit during a second time period subsequent to the first time period in the first operational mode.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: October 19, 2021
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae Hong Kim, Dae Hwa Paik, Seung Hyun Lim, Sin Hwan Lim
  • Patent number: 11139369
    Abstract: A method of forming a semiconductor device includes forming a trench in a semiconductor body; at least partially filling the trench with a filling material, the filling material; introducing dopants into a portion of the filling material, where the dopants have a first diffusion coefficient relative to the filling material and have a second diffusion coefficient relative to the semiconductor body, where the first diffusion coefficient is greater than the second diffusion coefficient, and where a ratio of the first diffusion coefficient to the second diffusion coefficient is greater than 10; and applying thermal processing to the semiconductor body configured to spread the dopants in the filling material along a vertical direction between a bottom side and a top side of the filling material by a diffusion process.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: October 5, 2021
    Inventors: Reinhard Ploss, Hans-Joachim Schulze
  • Patent number: 11133028
    Abstract: A magnetoresistance effect element has a first ferromagnetic metal layer, a second ferromagnetic metal layer, and a tunnel barrier layer that is sandwiched between the first and second ferromagnetic metal layers, the tunnel barrier layer is expressed by a chemical formula of AB2Ox, and has a spinel structure in which cations are arranged in a disordered manner, A represents a divalent cation that is either Mg or Zn, and B represents a trivalent cation that includes a plurality of elements selected from the group consisting of Al, Ga, and In.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: September 28, 2021
    Assignee: TDK CORPORATION
    Inventor: Tomoyuki Sasaki
  • Patent number: 11120989
    Abstract: A substrate is positioned in exposure to a plasma generation region within a plasma processing chamber. A first plasma is generated within the plasma generation region. The first plasma is configured to cause deposition of a film on the substrate until the film deposited on the substrate reaches a threshold film thickness. The substrate is then exposed to ultraviolet radiation to resolve defects within the film deposited on the substrate. The ultraviolet radiation can be supplied in-situ using either a second plasma configured to generate ultraviolet radiation or an ultraviolet irradiation device disposed in exposure to the plasma generation region. The ultraviolet radiation can also be supplied ex-situ by moving the substrate to an ultraviolet irradiation device separate from the plasma processing chamber. The substrate can be exposed to the ultraviolet radiation in a repeated manner to resolve defects within the deposited film as the film thickness increases.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: September 14, 2021
    Assignee: Lam Research Corporation
    Inventor: Shankar Swaminathan
  • Patent number: 11101151
    Abstract: A package substrate processing method for processing a package substrate having a division line, an electrode being formed on the division line includes a cutting step of cutting the package substrate along the division line by using a cutting blade and a burr removing step of removing burrs produced from the electrode in the cutting step by spraying a fluid to the package substrate along the division line after performing the cutting step. The cutting step includes a step of supplying a cutting liquid containing an organic acid and an oxidizing agent to a cutting area where the package substrate is to be cut by the cutting blade.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: August 24, 2021
    Assignee: DISCO CORPORATION
    Inventors: Kenji Takenouchi, Mitsutane Kokubu, Naoko Yamamoto, Chisato Yamada
  • Patent number: 11094735
    Abstract: An image sensor includes a pixel array including a plurality of pixels arranged in a first direction and a second direction. Each pixel of the plurality of pixels includes a plurality of photodiodes disposed adjacent to one another in at least one of the first direction and the second direction. The image sensor further includes a control logic configured to generate image data by obtaining pixel signals from the plurality of pixels, and read a pixel voltage corresponding to charges generated by two or more of the plurality of photodiodes included in one of the plurality of pixels, at substantially the same time.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: August 17, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Kyung Ho Lee
  • Patent number: 11088165
    Abstract: Some embodiments include a method in which a first stack is formed to include a metal-containing first layer, a second layer over the first layer, and a metal-containing third layer over the second layer. A first opening is formed to extend through the second and third layers. A sacrificial material is formed within the first opening. A second stack is formed over the first stack. A second opening is formed through the second stack, and is extended through the sacrificial material. First semiconductor material is formed within the second opening. A third opening is formed through the second stack and to the second layer. The second layer is removed to form a conduit. Conductively-doped second semiconductor material is formed within the conduit. Dopant is out-diffused from the conductively-doped second semiconductor material into the first semiconductor material. Some embodiments include integrated assemblies.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: August 10, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Gordon A. Haller, William R. Kueber, Zachary D. Beaman, Christopher G. Shea, Taehyun Kim
  • Patent number: 11088016
    Abstract: The disclosure relates to a process for locating devices, the process comprising the following steps: a) providing a carrier substrate comprising: a device layer; and alignment marks; b) providing a donor substrate; c) forming a weak zone in the donor substrate, the weak zone delimiting a useful layer; d) assembling the donor substrate and the carrier substrate; and e) fracturing the donor substrate in the weak zone so as to transfer the useful layer to the device layer; wherein the alignment marks are placed in cavities formed in the device layer, the cavities having an aperture flush with the free surface of the device layer.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: August 10, 2021
    Assignee: Soitec
    Inventors: Marcel Broekaart, Ionut Radu, Chrystelle Lagahe Blanchard
  • Patent number: 11081521
    Abstract: A method for manufacturing a plurality of crystalline semiconductor islands having different lattice parameters includes providing a relaxation substrate comprising a support and a flow layer on the support that includes first and second groups of blocks having different viscosities at a relaxation temperature. The relaxation substrate also comprises a plurality of strained crystalline semiconductor islands on the flow layer, the islands of a first group being located on the first group of blocks and islands of a second group being located on the second group of blocks. The relaxation substrate is then heat treated at a relaxation temperature higher than or equal to the glass transition temperature of at least one block of the flow layer to cause differentiated lateral expansion of the first and second groups of islands such that the first and second groups of relaxed islands then have different lattice parameters.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: August 3, 2021
    Assignee: Soitec
    Inventor: Jean-Marc Bethoux
  • Patent number: 11063176
    Abstract: A light emitting device includes: a light emitting element that comprises a first electrode and a second electrode located at a lower surface of the light emitting element; a covering member that covers the light emitting element such that at least a portion of a lower surface of each of the first electrode and the second electrode is exposed from a lower surface of the covering member; and first and second metal layers, each of which covers and contacts the exposed portion of the lower surface of a respective one of the first and second electrodes. In a bottom view, the first electrode has a shape with at least one recess on a first side facing to the second electrode, a portion of a lower surface of the covering member being exposed from the recess of the first metal layer.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: July 13, 2021
    Assignee: NICHIA CORPORATION
    Inventor: Yoshikazu Matsuda
  • Patent number: 11037798
    Abstract: Embodiments of the disclosure describe a cyclic etch method for carbon-based films. According to one embodiment, the method includes providing a substrate containing the carbon-based film, exposing the carbon-based film to an oxidizing plasma thereby forming an oxidized layer on the carbon-based film, thereafter, exposing the oxidized layer to a non-oxidizing inert gas plasma thereby removing the oxidized layer and forming a carbonized surface layer on the carbon-based film, and repeating the exposing steps at least once.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: June 15, 2021
    Assignee: Tokyo Electron Limited
    Inventors: Barton G. Lane, Nasim Eibagi, Alok Ranjan, Peter L. G. Ventzek
  • Patent number: 11031300
    Abstract: A method for manufacturing a semiconductor structure is provided. The method includes: receiving a substrate having a first epitaxy region in a first transistor of a first conductive type and a second epitaxy region in a second transistor of a second conductive type; introducing an agent onto the first epitaxy region and the second epitaxy region, wherein the agent is selectively deposited to the second epitaxy region; selectively depositing a first metal layer on the first epitaxy region; and depositing a second metal layer on the first epitaxy region and the second epitaxy region. A semiconductor structure according to the method is also provided.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: June 8, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Sung-Li Wang, Peng-Wei Chu, Yasutoshi Okuno
  • Patent number: 11004784
    Abstract: Certain aspects of the present disclosure provide a metal-on-metal (MoM) capacitor with metal layers, each layer having two different electrical conductors with orthogonally-arranged conductive arteries and orthogonally-oriented conductive fingers. One exemplary MoM capacitor generally includes a plurality of metal layers, wherein a first metal layer in the plurality of metal layers comprises a first electrical conductor providing a first node of the MoM capacitor and a second electrical conductor providing a second node of the MoM capacitor. According to aspects, the first electrical conductor comprises a first plurality of conductive fingers and the second electrical conductor comprises a second plurality of conductive fingers. Further, conductive fingers of the first plurality of conductive fingers are interdigitated with conductive fingers of the second plurality of conductive fingers.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: May 11, 2021
    Assignee: QUALCOMM Incorporated
    Inventors: Haitao Cheng, Ye Lu, Chao Song
  • Patent number: 11005004
    Abstract: Provided is a micro light emitting diode (LED) structure including an n-type semiconductor substrate layer, a light emitting structure layer formed on the n-type semiconductor substrate layer, and a p-type semiconductor layer formed on the light emitting structure layer, wherein the light emitting structure layer includes an arrangement of light emitting structures in which active layers including In and Ga are formed on tops thereof, wherein the light emitting structure layer forms at least three distinctive regions each including a single light emitting structure or a plurality of light emitting structures, the distinctive regions configured to emit light of at least two different wavelengths, the distinctive regions are controllable to emit light individually, and the distinctive regions are different in at least one of sizes of base faces, heights, and center-to-center distances of the lighting emitting structures of the regions.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: May 11, 2021
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Yong-Hoon Cho, Youngchul Sim, Kie Young Woo
  • Patent number: 11004802
    Abstract: An integrated circuit chip includes a wide bandgap semiconductor substrate, a plurality of semiconductor electronic components disposed on the semiconductor substrate, an overlying insulating layer disposed on the plurality of semiconductor devices, and a crack barrier laterally displaced from all of the plurality of semiconductor components. The crack barrier is configured to prevent propagation of cracks in the overlying insulating layer. The crack barrier does not conductively connect to any of the plurality of semiconductor electronic components.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: May 11, 2021
    Assignee: United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventors: David J. Spry, Philip G. Neudeck