Patents Examined by Tsz Chiu
  • Patent number: 9823528
    Abstract: An array substrate for a liquid crystal display device includes a first storage capacitor and a second storage capacitor for increased capacitance. The first storage capacitor is formed by a first common electrode and a pixel electrode. The second storage capacitor is formed by a second common electrode and the pixel electrode.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: November 21, 2017
    Assignee: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Wu-Liu Tsai, Yi-Chun Kao, Hsin-Hua Lin, Po-Li Shih, Chih-Lung Lee
  • Patent number: 9825184
    Abstract: According to one embodiment, an inter-electrode insulating film interposed between a floating gate electrode and a control gate electrode includes a lower layer insulating film disposed on a side closer to the floating gate electrode, an upper layer insulating film disposed on a side closer to the control gate electrode, and an intermediate insulating film interposed between the lower layer insulating film and the upper layer insulating film, wherein the intermediate insulating film contains a first element, and the lower layer insulating film contains the first element and a second element, such that a ratio of the first element relative to the second element is larger on a side closer to the intermediate insulating film than on a side closer to the floating gate electrode.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: November 21, 2017
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventor: Takashi Hayashi
  • Patent number: 9812338
    Abstract: Embodiments of a multi-layer environmental barrier for a semiconductor device and methods of manufacturing the same are disclosed. In one embodiment, a semiconductor device is formed on a semiconductor die. The semiconductor die includes a semiconductor body and a passivation structure on the semiconductor body. A multi-level environmental barrier is provided on the passivation structure. The multi-layer environmental barrier is a low-defect multi-layer dielectric film that hermetically seals the semiconductor device from the environment. In one embodiment, the multi-layer environmental barrier has a defect density of less than 10 defects per square centimeter (cm2). By having a low defect density, the multi-layer environmental barrier serves as a robust barrier to the environment.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: November 7, 2017
    Assignee: Cree, Inc.
    Inventors: Zoltan Ring, Helmut Hagleitner, Daniel Namishia
  • Patent number: 9805935
    Abstract: A method for manufacturing a semiconductor device includes forming a first active region on a semiconductor substrate, forming a semiconductor layer on the first active region, patterning the semiconductor layer into a plurality of fins extending from the first active region vertically with respect to the semiconductor substrate, wherein the first active region is located at bottom ends of the plurality of fins, forming a silicide layer on exposed portions of the first active region, forming an electrically conductive contact on the silicide region, forming a second active region on top ends of each of the plurality of fins, and forming a gate structure between the plurality of fins, wherein the gate structure is positioned over the first active region and under the second active region.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: October 31, 2017
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Huiming Bu, Terence B. Hook, Fee Li Lie, Junli Wang
  • Patent number: 9793219
    Abstract: A wiring board includes a base substrate, a semiconductor element embedded in the substrate and having active and non-active surfaces such that the semiconductor has a terminal on the active surface, a first build-up layer including an insulating layer and first conductor pads such that the first conductor pads have exposed surfaces exposed from a surface of the insulating layer on the opposite side with respect to the substrate, and a second build-up layer including an insulating layer and second conductor pads such that the second conductor pads have exposed surfaces exposed from a surface of the insulating layer on the opposite side with respect to the substrate. The insulating layer in the first build-up includes resin material and reinforcing material, the insulating layer in the second build-up includes resin material and reinforcing material, and the first conductor pads is embedded in the insulating layer in the first build-up.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: October 17, 2017
    Assignee: IBIDEN CO., LTD.
    Inventor: Keisuke Shimizu
  • Patent number: 9786664
    Abstract: A dual gate CMOS structure including a semiconductor substrate; a first channel structure including a first semiconductor material and a second channel structure including a second semiconductor material on the substrate. The first semiconductor material including SixGe1-x where x=0 to 1 and the second semiconductor material including a group III-V compound material. A first gate stack on the first channel structure includes: a first native oxide layer as an interface control layer, the first native oxide layer comprising an oxide of the first semiconductor material; a first high-k dielectric layer; a first metal gate layer. A second gate stack on the second channel structure includes a second high-k dielectric layer; a second metal gate layer. The interface between the second channel structure and the second high-k dielectric layer is free of any native oxides of the second semiconductor material.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: October 10, 2017
    Assignee: International Business Machines Corporation
    Inventors: Lukas Czornomaz, Veeresh Vidyadhar Deshpande, Vladimir Djara, Jean Fompeyrine
  • Patent number: 9786565
    Abstract: A semiconductor device includes a transistor configuration including first and second gate electrodes, each of the first and second gate electrodes having at least a bottom layer and an upper layer including polycrystalline silicon grains, wherein the first gate electrode is a nMOS gate electrode formed in an nMOS region of the transistor configuration, wherein the polycrystalline silicon grains included in the bottom layer of the first gate electrode have a greater particle diameter than the polycrystalline grains included in the upper layer of the second gate electrode.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: October 10, 2017
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Hidenobu Fukutome, Mitsugu Tajima
  • Patent number: 9780272
    Abstract: Disclosed are a light-emitting diode and a method for manufacturing a light-emitting diode. The method includes: a base layer; a circuit layer formed on the base layer; a light-emitting chip formed on the circuit layer; electrode pads formed on the base layer and electrically connected to the light-emitting chip so that the electrode pads and the circuit layer and the light-emitting chip are spaced from each other by first spacing distances and the electrode pads and the circuit layer and the light-emitting chip define therebetween first grooves, where an altitude of the electrode pad is equal to an altitude of the light-emitting chip; and a phosphor powder contained package layer formed on the light-emitting chip and the electrode pads and filled into the first grooves between the electrode pads and the circuit layer to form a uniform dome shape.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: October 3, 2017
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd
    Inventor: Gege Zhou
  • Patent number: 9754862
    Abstract: A device includes a carrier having a first carrier section on a first level and a second carrier section on a second level different from the first level. The device further includes a compound semiconductor chip arranged over the first carrier section and a control semiconductor chip arranged over the second carrier section. The control semiconductor chip is configured to control the compound semiconductor chip. An encapsulation material covers the compound semiconductor chip and the control semiconductor chip.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: September 5, 2017
    Assignee: Infineon Technologies Austria AG
    Inventors: Ralf Otremba, Klaus Schiess
  • Patent number: 9748337
    Abstract: Three directions intersecting each other are referred to as first to third directions. A semiconductor memory device according to embodiments includes a semiconductor substrate having a top surface spread in the first and second directions, and a plurality of conductive layers laminated at predetermined intervals in the third direction on the semiconductor substrate. The semiconductor memory device further includes a columnar semiconductor layer having an interface that is in contact with the semiconductor substrate on a side surface. The columnar semiconductor layer is opposed to the plurality of conductive layers. The columnar semiconductor layer has the third direction as a lengthwise direction. The interface exists in a position deeper than the top surface of the semiconductor substrate in the third direction.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: August 29, 2017
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Shigeki Kobayashi, Mitsuru Sato, Tomohiro Yamada
  • Patent number: 9741819
    Abstract: The present disclosure provides a transistor device and fabrication method thereof. A dummy gate is formed on a substrate. An interlayer dielectric layer is formed on the substrate and sidewall surfaces of the dummy gate. The interlayer dielectric layer has a top surface coplanar with a top surface of the dummy gate. A mask layer is formed on the top surface of the interlayer dielectric layer. The mask layer is used as an etch mask to remove the dummy gate to form a trench in the interlayer dielectric layer to provide a trench footing on sidewall surfaces of the trench and near a trench bottom. The trench footing is then removed by applying a dry etching process. A gate electrode is then formed in the trench to form a transistor with improved electrical performance.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: August 22, 2017
    Assignee: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION
    Inventors: Haiyang Zhang, Xuan Zhang
  • Patent number: 9741611
    Abstract: A semiconductor device may include a semiconductor layer having a convex portion and a concave portion surrounding the convex portion. The semiconductor device may further include a protrusion type isolation layer filling the concave portion and extending upward so that an uppermost surface of the isolation layer is a at level higher that an uppermost surface of the convex portion.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: August 22, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dong-hyun Kim, Jai-kyun Park
  • Patent number: 9728444
    Abstract: Lift-off methods for fabricating metal line patterns on a substrate are provided. For example, a method to fabricate a device includes forming a sacrificial layer on a substrate and forming a photoresist mask over the sacrificial layer, isotropically etching a portion of the sacrificial layer exposed through an opening of the photoresist mask to form an undercut region in the sacrificial layer below the photoresist mask, wherein the undercut region defines an overhang structure, and anisotropically etching a portion of the sacrificial layer exposed through the opening of the photoresist mask to form an opening through the sacrificial layer down to the substrate. Metallic material is deposited to cover the photoresist mask and to at least partially fill the opening formed in the sacrificial layer without coating the overhang structure with metallic material. The sacrificial layer is dissolved to lift-off the metallic material covering the photoresist mask.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: August 8, 2017
    Assignee: International Business Machines Corporation
    Inventors: Guy M. Cohen, Sebastian U. Engelmann, Steve Holmes, Jyotica V. Patel
  • Patent number: 9728550
    Abstract: According to one embodiment, a method for manufacturing a semiconductor memory device includes forming a stacked body by alternately stacking an insulating film and a conductive film. The method includes forming a trench in the stacked body. The trench extends in one direction and divides the conductive film. The method includes burying a diblock copolymer in the trench. The method includes phase-separating the diblock copolymer into a plurality of first blocks and an insulative second block extending in a stacking direction of the insulating film and the conductive film. The method includes forming a plurality of holes by removing the first blocks. The method includes forming charge accumulation layers on inner surfaces of the holes. And, the method includes forming a plurality of semiconductor pillars extending in the stacking direction by burying a semiconductor material in the holes.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: August 8, 2017
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventor: Mitsuhiro Omura
  • Patent number: 9697672
    Abstract: According to one aspect of the invention, a gaming system and method for providing passive participation in at least one wagering game are disclosed. Funds are received to obtain a period of eligibility for an award associated with the wagering game. An entertainment layer having a plurality of features is conducted in response to receiving the wager. A separate gaming layer includes the wagering game. A gaming machine having a display and a player input device is in communication with the entertainment layer and the gaming layer. At least one feature of the entertainment layer is conducted during the period of eligibility. The entertainment layer is operable in response to at least one input from the player input device. Information regarding the wagering game is presented on the gaming machine.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: July 4, 2017
    Assignee: Bally Gaming, Inc.
    Inventors: Alfred Thomas, Mark B. Gagner
  • Patent number: 9691898
    Abstract: The present disclosure relates to a transistor device having a strained source/drain region comprising a strained inducing material having a discontinuous germanium concentration profile. In some embodiments, the transistor device has a gate structure disposed onto a semiconductor substrate. A source/drain region having a strain inducing material is disposed along a side of the gate structure within a source/drain recess in the semiconductor substrate. The strain inducing material has a discontinuous germanium concentration profile along a line extending from a bottom surface of the source/drain recess to a top surface of the source/drain recess. The discontinuous germanium concentration profile provides improved strain boosting and dislocation propagation.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: June 27, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsueh-Chang Sung, Tsz-Mei Kwok, Kun-Mu Li, Tze-Liang Lee, Chii-Horng Li
  • Patent number: 9691814
    Abstract: A chip-on-film (COF) package includes a base film, an integrated circuit chip, and a plurality of signal interconnections. The base film includes a bonding region and a non-bonding region. The integrated circuit chip is at the non-bonding region. Each of the plurality of signal interconnections is coupled to the integrated circuit chip and extend to the bonding region along a first direction. The plurality of signal interconnections are spaced from each other along a second direction substantially crossing the first direction. The plurality of signal interconnections alternate on a first surface and a second surface opposite to the first surface of the base film along the second direction.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: June 27, 2017
    Assignee: Samsung Display Co., Ltd.
    Inventor: Dong-Ho Kim
  • Patent number: 9685576
    Abstract: A photon detector includes a single photon avalanche diode (SPAD) disposed proximate to a front side of a semiconductor layer. The SPAD includes a multiplication junction that is reversed biased above a breakdown voltage such that light directed into the SPAD through a backside of the semiconductor layer triggers an avalanche multiplication process. A guard ring is disposed in a guard ring region that surrounds the SPAD to isolate the SPAD in the semiconductor layer. A guard ring region reflecting structure is disposed in the guard ring region proximate to the guard ring and proximate to the front side of the semiconductor layer such that light directed into the guard ring region through the backside of the semiconductor layer that bypasses the SPAD is redirected by the guard ring region reflecting structure back into the semiconductor layer and into the SPAD.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: June 20, 2017
    Assignee: OmniVision Technologies, Inc.
    Inventor: Eric A. G. Webster
  • Patent number: 9680088
    Abstract: In a tunnel junction element having a ferromagnetic free layer, an insulating layer and a ferromagnetic fixed layer, in order to reduce the current necessary for spin-transfer magnetization reversal operation in the tunnel junction element, the ferromagnetic free layer comprises first and second ferromagnetic layers, a nonmagnetic metal layer is provided between these ferromagnetic layers, the nonmagnetic metal layer is such that magnetic coupling is preserved between the first and second ferromagnetic layers, also such that there is no influence on the crystal growth of the first and second ferromagnetic layers, the first ferromagnetic layer and the second ferromagnetic layer are placed such that the first ferromagnetic layer is in contact with the insulating layer, and the second ferromagnetic layer has a smaller magnetization than the first ferromagnetic layer.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: June 13, 2017
    Assignee: III HOLDINGS 3, LLC
    Inventor: Takuya Ono
  • Patent number: 9660003
    Abstract: An organic electroluminescent device with a touch sensor including: a first substrate; a second substrate arranged opposite to the first substrate; an organic EL element layer arranged above the first substrate; a first sealing film arranged toward the second substrate of the organic EL element layer, covering the organic EL element layer, and including a first inorganic layer; plural first detection electrodes extending in one direction, and arranged in parallel toward the second substrate of the first sealing film; a second sealing film arranged toward the second substrate of the first detection electrodes, and including a second inorganic layer; plural second detection electrodes extending in another direction different from the one direction, and arranged in parallel toward the second substrate of the second sealing film; and a touch sensor control unit controlling a potential to detect a touch with a display surface.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: May 23, 2017
    Assignee: Japan Display Inc.
    Inventors: Toshihiro Sato, Ryoichi Ito