Patents Examined by Vu Vu
  • Patent number: 11798814
    Abstract: A semiconductor package includes an interposer having a separation layer on a rear surface of which a plurality of first recesses is arranged. A plurality of wiring structures is stacked on the separation layer alternately with a plurality of insulation interlayers. A plurality of semiconductor devices is arranged, side by side, on the interposer side and connected to a plurality of the wiring structures. A plurality of contact terminals on the rear surface of the separation layer is connected to the plurality of the wiring structures through the separation layer. A flatness deterioration of the interposer is minimized and the contact surface between the interposer and under fill resin is enlarged.
    Type: Grant
    Filed: May 30, 2022
    Date of Patent: October 24, 2023
    Inventor: Junghoon Kang
  • Patent number: 11791255
    Abstract: A die package and method is disclosed. In one example, the die package includes a die having a first die contact on a first side and a second die contact on a second side opposite the first side, and insulating material laterally adjacent to the die. A metal structure substantially directly contacts the surface of the second die contact, wherein the metal structure is made of the same material as the second die contact. A first pad contact on the first side of the die electrically contacts the first die contact, and a second pad contact on the first side of the die electrically contacts the second die contact via the metal structure. The insulating material electrically insulates the metal structure from the first die contact.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: October 17, 2023
    Assignee: Infineon Technologies AG
    Inventor: Petteri Palm
  • Patent number: 11789366
    Abstract: A method for removing a resist layer including the following steps is provided. A patterned resist layer on a material layer is formed. A stripping solution is applied to the patterned resist layer to dissolve the patterned resist layer without dissolving the material layer, wherein the stripping solution comprises a non-dimethyl sulfoxide solvent and an alkaline compound, the non-dimethyl sulfoxide solvent comprises an aprotic solvent and a protic solvent.
    Type: Grant
    Filed: June 1, 2022
    Date of Patent: October 17, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Jui Kuo, Hui-Jung Tsai, Tai-Min Chang
  • Patent number: 11784141
    Abstract: A semiconductor package comprises a semiconductor substrate, a first metal layer, an adhesive layer, a second metal layer, a rigid supporting layer, and a plurality of contact pads. A thickness of the semiconductor substrate is equal to or less than 50 microns. A thickness of the rigid supporting layer is larger than the thickness of the semiconductor substrate. A thickness of the second metal layer is larger than a thickness of the first metal layer. A method comprises the steps of providing a device wafer; providing a supporting wafer; attaching the supporting wafer to the device wafer via an adhesive layer; and applying a singulaton process so as to form a plurality of semiconductor packages.
    Type: Grant
    Filed: October 5, 2022
    Date of Patent: October 10, 2023
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INTERNATIONAL LP
    Inventors: Jun Lu, Long-Ching Wang, Madhur Bobde, Bo Chen, Shuhua Zhou
  • Patent number: 11784093
    Abstract: A method for processing electronic die includes providing a substrate having a plurality of electronic die formed as part of the substrate and separated from each other by spaces. The method includes placing the substrate onto a first carrier substrate. The method includes plasma etching the substrate through the spaces to form singulation lines adjacent the plurality of electronic die. The method includes exposing the plurality of electronic die to solvent vapors, such as heated solvent vapors, under reduced pressure to reduce the presence of residual contaminants resulting from the plasma etching step.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: October 10, 2023
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Gordon M. Grivna
  • Patent number: 11784130
    Abstract: A package structure and a formation method of a package structure are provided. The method includes forming a recess in a circuit substrate, and the recess has a first sidewall and a second sidewall. The second sidewall is between the first sidewall and a bottommost surface of the circuit substrate, and the second sidewall is steeper than the first sidewall. The method also includes forming a die package, and the die package has a semiconductor die. The method further includes bonding the die package to the circuit substrate through bonding structures such that a portion of the semiconductor die enters the recess of the circuit substrate. In addition, the method includes forming an underfill material to surround the bonding structures and to fill the recess.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: October 10, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Sheng Lin, Shin-Puu Jeng, Po-Yao Lin, Chin-Hua Wang, Shu-Shen Yeh, Che-Chia Yang
  • Patent number: 11784081
    Abstract: A micro device transfer apparatus and a micro device transfer method are provided. The micro device transfer apparatus comprises a stage unit including a stage where a target substrate is to be disposed, a plurality of transfer head units disposed above the stage, and a transfer head unit moving part configured to move the plurality of transfer head units, wherein, the transfer head unit comprises a carrier substrate fastening part configured to fasten a carrier substrate where a plurality of micro devices are disposed, a mask unit disposed above the carrier substrate fastening part, the mask unit comprising a mask including an opening part and a shielding part, a light emitting part disposed on the mask unit, and a housing formed around the carrier substrate fastening part, the mask unit, and the light emitting part.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: October 10, 2023
    Assignee: Samsung Display Co., Ltd.
    Inventors: Heung Yeol Na, Kang Won Lee, Yoon Jae Lee
  • Patent number: 11776820
    Abstract: Embodiments of the application provide a vertical interconnection structure and a manufacturing method thereof, a packaged chip, and a chip packaging method. Conductive pillars are formed on a first surface of a substrate. A first insulated support layer wrapping the conductive pillars is formed on the first surface of the substrate. The conductive pillars are located in the first insulated support layer. An upper surface of the conductive pillar that is away from the substrate is not covered by the first insulated support layer. Then the substrate is removed.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: October 3, 2023
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Xiaoyun Wei, Yong Yang, Chaojun Deng
  • Patent number: 11776949
    Abstract: An IC device includes a first active area extending away from a first endpoint in a first direction, a second active area extending away from a second endpoint in the first direction, a third active area positioned between the first and second active areas, and a gate structure perpendicular to the first through third active areas. The gate structure overlies each of the first and second endpoints and the third active area, and the third active area extends away from the gate structure in a second direction opposite the first direction.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: October 3, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chien-Ying Chen, Lee-Chung Lu, Li-Chun Tien, Ta-Pen Guo
  • Patent number: 11778842
    Abstract: A display panel and method of manufacture are described. In an embodiment, a display substrate includes a pixel area and a non-pixel area. An array of subpixels and corresponding array of bottom electrodes are in the pixel area. An array of micro LED devices are bonded to the array of bottom electrodes. One or more top electrode layers are formed in electrical contact with the array of micro LED devices. In one embodiment a redundant pair of micro LED devices are bonded to the array of bottom electrodes. In one embodiment, the array of micro LED devices are imaged to detect irregularities.
    Type: Grant
    Filed: May 31, 2022
    Date of Patent: October 3, 2023
    Assignee: Apple Inc.
    Inventors: Andreas Bibl, Kapil V. Sakariya, Charles R. Griggs, James Michael Perkins
  • Patent number: 11776942
    Abstract: A method for manufacturing a display panel includes providing a backplate, forming bonding parts on backplate, forming an auxiliary layer on backplate, releasing light-emitting elements onto the auxiliary layer such that electrodes of the light-emitting elements are in contact with the first parts to form an intermediate backplate, arranging the intermediate backplate under first predetermined condition under which a fluidity of the first part is greater than that of the second part, and bonding the electrodes and the bonding parts to form an eutectic bonding layer, and arranging the intermediate backplate under second predetermined condition such that the first and second parts form solid-state first and second members. The backplate includes first and second regions. The bonding parts are located in the first regions. The auxiliary layer covers the backplate and the bonding parts. The auxiliary layer includes first and second parts respectively located in the first and second regions.
    Type: Grant
    Filed: December 19, 2022
    Date of Patent: October 3, 2023
    Assignee: Shanghai Tianma Micro-Electronics Co., Ltd.
    Inventor: Canyuan Zhang
  • Patent number: 11769685
    Abstract: A manufacturing method of a semiconductor package is provided. The manufacturing method includes the following. A plurality of semiconductor components are provided. Each semiconductor component has at least one conductive bump. A substrate is provided. The substrate has a plurality of conductive pads. A transfer device is provided. The transfer device transfers the semiconductor components onto the substrate. A heating device is provided. The heating device heats or pressurizes at least two semiconductor components. During transferring of the semiconductor components to the substrate, the at least one conductive bump of each semiconductor component is docked to a corresponding one of the conductive pads.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: September 26, 2023
    Assignee: Innolux Corporation
    Inventors: Cheng-Chi Wang, Wen-Hsiang Liao, Yeong-E Chen, Hung-Sheng Chou, Cheng-En Cheng
  • Patent number: 11769735
    Abstract: Embodiments disclosed herein include electronic packages and methods of forming such electronic packages. In an embodiment, the electronic package comprises a mold layer having a first surface and a second surface opposite the first surface, and a plurality of first dies embedded in the mold layer. In an embodiment, each of the plurality of first dies has a surface that is substantially coplanar with the first surface of the mold layer. In an embodiment, the electronic package further comprises a second die embedded in the mold layer. In an embodiment, the second die is positioned between the plurality of first dies and the second surface of the mold layer.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: September 26, 2023
    Assignee: Intel Corporation
    Inventors: Srinivas Pietambaram, Gang Duan, Deepak Kulkarni, Rahul Manepalli, Xiaoying Guo
  • Patent number: 11769698
    Abstract: A method of testing a semiconductor package is provided. The method includes forming a first metallization layer, wherein the first metallization layer includes a first conductive pad electrically connected to a charge measurement unit and a charge receiving unit; performing a first test against the charge measurement unit through the first conductive pad to determine whether breakdown occurs in the charge measurement unit; and in response to determining that no breakdown occurs in the charge measurement unit, forming a second dielectric layer over the first metallization layer, wherein a portion of the first conductive pad is exposed from the second dielectric layer.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: September 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chi-Hui Lai, Yang-Che Chen, Chen-Hua Lin, Victor Chiang Liang, Chwen-Ming Liu
  • Patent number: 11769739
    Abstract: A package structure includes a redistribution circuit structure, a wiring substrate, a semiconductor device, an insulating encapsulation, and a reinforcement structure. The redistribution circuit structure has dielectric layers. The wiring substrate is disposed on the redistribution circuit structure. The semiconductor device is disposed on the redistribution circuit structure opposite to the wiring substrate. The insulating encapsulation laterally encapsulates the wiring substrate. The reinforcement structure is partially embedded in the redistribution circuit structure and is partially embedded in the insulating encapsulation. The reinforcement structure includes reinforcement pattern layers and reinforcement vias. The reinforcement pattern layers and the dielectric layers are stacked alternately. The reinforcement vias penetrate through the dielectric layers to connect the reinforcement pattern layers. The reinforcement structure is electrically floating.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: September 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Fu Tsai, Shih-Ting Lin, Szu-Wei Lu, Chen-Hsuan Tsai, I-Ting Huang
  • Patent number: 11769741
    Abstract: An organic interposer includes interconnect-level dielectric material layers embedding redistribution interconnect structures, at least one dielectric capping layer overlying a topmost interconnect-level dielectric material layer, a bonding-level dielectric layer overlying the at least one dielectric capping layer, and a dual-layer inductor structure, which may include a lower conductive coil embedded within the topmost interconnect-level dielectric material layer, a conductive via structure vertically extending through the at least one dielectric capping layer, and an upper conductive coil embedded within the bonding-level dielectric layer and comprising copper.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: September 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Wei-Han Chiang, Ming-Da Cheng, Ching-Ho Cheng, Wei Sen Chang, Hong-Seng Shue, Ching-Wen Hsiao, Chun-Hung Chen
  • Patent number: 11764095
    Abstract: A wet alignment method for a micro-semiconductor chip and a display transfer structure are provided. The wet alignment method for a micro-semiconductor chip includes: supplying a liquid to a transfer substrate including a plurality of grooves; supplying the micro-semiconductor chip onto the transfer substrate; scanning the transfer substrate by using an absorber capable of absorbing the liquid. According to the wet alignment method, the micro-semiconductor chip may be transferred onto a large area.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: September 19, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kyungwook Hwang, Junsik Hwang
  • Patent number: 11764114
    Abstract: A wafer manufacturing method includes a wafer preparing step of preparing a wafer including a semiconductor device formed in each of a plurality of regions demarcated by a plurality of streets intersecting each other, a support substrate fixing step of fixing the wafer to a support substrate, a removing step of removing, from the wafer, a defective device region including a semiconductor device determined to be a defective product among a plurality of the semiconductor devices formed in the wafer, and a fitting step of fitting, into a removed region formed by removing the defective device region from the wafer, a device chip including a semiconductor device as a non-defective product having same functions as those of the semiconductor device determined to be a defective product and having a size capable of being fitted into the removed region, and fixing the device chip to the support substrate.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: September 19, 2023
    Assignee: DISCO CORPORATION
    Inventors: Youngsuk Kim, Byeongdeck Jang, Akihito Kawai, Shunsuke Teranishi
  • Patent number: 11764115
    Abstract: A wafer manufacturing method includes a wafer preparing step of preparing a wafer including a semiconductor device formed in each of a plurality of regions demarcated by a plurality of streets intersecting each other, a removing step of removing, from the wafer, a defective device region including a semiconductor device determined to be a defective product among a plurality of the semiconductor devices formed in the wafer, and a fitting step of fitting, into a removed region formed by removing the defective device region from the wafer, a device chip including a semiconductor device as a non-defective product having same functions as those of the semiconductor device determined to be a defective product and having a size capable of being fitted into the removed region.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: September 19, 2023
    Assignee: DISCO CORPORATION
    Inventors: Youngsuk Kim, Byeongdeck Jang, Akihito Kawai, Shunsuke Teranishi
  • Patent number: 11764344
    Abstract: A manufacturing method of a package structure is provided, which includes the following steps. A carrier having a surface is provided. A copper foil layer is laminated on the surface of the carrier. A subtractive process is performed on the copper foil layer to form a copper foil circuit layer on the carrier. The copper foil circuit layer exposes a part of the surface of the carrier. A build-up structure layer is formed on the copper foil circuit layer and the surface of the carrier. A first surface of the copper foil circuit layer is aligned with a second surface of the build-up structure layer. At least one electronic component is disposed on the build-up structure layer. A package colloid is formed to cover the electronic component and the build-up structure layer. The carrier is removed to expose the first surface of the copper foil circuit layer.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: September 19, 2023
    Assignee: Unimicron Technology Corp.
    Inventors: Tzyy-Jang Tseng, Cheng-Ta Ko, Pu-Ju Lin, Chi-Hai Kuo, Kai-Ming Yang