Patents Examined by Wesley A. Nicolas
  • Patent number: 6709564
    Abstract: The acid copper sulfate solutions used for electroplating copper circuitry in trenches and vias in IC dielectric material in the Damascene process are replaced with a type of plating system based on the use of highly complexing anions (e.g., pyrophosphate, cyanide, sulfamate, etc.) to provide an inherently high overvoltage that effectively suppresses runaway copper deposition. Such systems, requiring only one easily-controlled organic additive species to provide outstanding leveling, are more efficacous for bottom-up filling of Damascene trenches and vias than acid copper sulfate baths, which require a minimum of two organic additive species. The highly complexed baths produce fine-grained copper deposits that are typically much harder than large-grained acid sulfate copper deposits, and which exhibit stable mechanical properties that do not change with time, thereby minimizing “dishing” and giving more consistent CMP results.
    Type: Grant
    Filed: September 30, 1999
    Date of Patent: March 23, 2004
    Assignee: Rockwell Scientific Licensing, LLC
    Inventors: D. Morgan Tench, John T. White, Dieter Dornisch, Maureen Brongo
  • Patent number: 6706167
    Abstract: A polymer additive for alkaline zinc and zinc alloy electrodepositing media and processes comprises the reaction product of one or both of (i) a first di-tertiary amine of the formula:  where R′ represents  and q is 2 to 6, R represents CH3 or C2H5 and each R may be the same or different and m is 2 to 4, and a second di-tertiary amine of the formula:  where B is CgH2g+1 and g=0 or an integer the respective B groups being the same or different, and f=0 o an integer, and R″ represents CH3 or C2H5 and each R″ may be the same or different, with (ii) a di-halo alkane of the formula: A—(CH2)n—A where A represents a halogen atom and n is at least 2. The resulting polymer preferably has the general structure: Where: 0≦x≦1 0≦y≦1 and: either (x or y) or (x and y)=1 z is at least 2 and when y=0, n is at least 3.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: March 16, 2004
    Inventors: Trevor Pearson, Alan Peter Swales
  • Patent number: 6706166
    Abstract: A method for improving an electrodeposited metal film uniformity and preventing metal deposition and peeling of deposited metal from an electrode during an electrodeposition and electropolishing process including providing a first anode electrode assembly and a semiconductor wafer plating surface disposed in an electrolyte bath including a plating metal for deposition onto the semiconductor wafer plating surface; providing at least one additional anode electrode assembly including the plating metal disposed peripheral to the first anode electrode assembly for selectively applying the cathodic electrical potential during an electropolishing process; and, periodically alternating between an electrodeposition process and electropolishing process with respect to the semiconductor wafer plating surface such that the plating metal is preferentially plated onto the at least one additional electrode assembly.
    Type: Grant
    Filed: May 6, 2002
    Date of Patent: March 16, 2004
    Assignee: Taiwan Semiconductor Manufacturing Co. Ltd.
    Inventors: Shih-Wei Chou, Ming-Hsing Tsai
  • Patent number: 6689216
    Abstract: A plating apparatus and a plating liquid removing method removes a plating liquid remaining on a substrate-contacting portion, or portions in its vicinity, of a substrate holding member. The plating apparatus comprises a head having a rotatable housing provided with a substrate holding member for holding a substrate, a plating process container, disposed below the head, for holding a plating liquid therein, and a plating liquid removing mechanism for removing plating liquid remaining on the substrate-contacting portion, or the portions in its vicinity, at an inner circumferential edge of the substrate holding member.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: February 10, 2004
    Assignee: Ebara Corporation
    Inventors: Satoshi Sendai, Kenya Tomioka, Katsumi Tsuda
  • Patent number: 6685815
    Abstract: An electro-chemical deposition apparatus and method are generally provided. In one embodiment of the invention, an electro-chemical deposition apparatus includes a housing having a substrate support disposed therein and adapted to rotate a substrate. One or more electrical contact elements are disposed on the substrate support. A drive system is disposed proximate the housing. The drive system is magnetically coupled to and adapted to rotate the substrate support. In another embodiment, a method of plating a substrate includes the steps of covering a substrate supported within a housing with electrolyte, and displacing a portion of the electrolyte from the housing prior to electrically biasing the substrate, and electrically biasing the substrate.
    Type: Grant
    Filed: January 14, 2002
    Date of Patent: February 3, 2004
    Assignee: Applied Materials Inc.
    Inventor: Nicolay Kovarsky
  • Patent number: 6676826
    Abstract: A method for production of a rotor for centrifugal compressor, wherein the said rotor is produced from a monolithic disc, which is provided with a central hole. The method consists of use, within an isolating medium, of at least one first electrode which has polarity opposite the polarity of the rotor, wherein the said first electrode operates starting from the outer diameter of the monolithic disc, in order to produce the blades and the cavities of the said rotor, and wherein the processing takes place with a continuous path, consisting of a first step of roughing, followed by a second step of finishing with a tool which has a shape similar to that of the electrode used for the first roughing step, in order to produce an accurate geometry of the blades.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: January 13, 2004
    Assignee: Nuovo Pignone Holding S.p.A.
    Inventors: Verter Battistini, Umberto Mariotti
  • Patent number: 6666960
    Abstract: An electroplating current supply system includes a power supply unit for supplying an object to be plated (4) with an electroplating current whose polarity is inverted at predetermined intervals. The power supply unit includes a first DC power supply (3A) supplying a positive current and a second power supply (3B) supplying a negative current. The system includes further a processing unit (58) for controlling the ratio in magnitude and duration of the positive current (I2) to the negative current (I1) supplied to the object so as to plate the object with a uniform coating.
    Type: Grant
    Filed: February 1, 2002
    Date of Patent: December 23, 2003
    Assignee: Sansha Electric Manufacturing Company, Limited
    Inventors: Toru Arai, Makoto Sakurada, Yoshiyuki Nishioka
  • Patent number: 6666961
    Abstract: An electrochemical cell capable of operating in pressure differentials exceeding about 2,000 psi, using a porous electrode. The porous electrode comprises a catalyst adsorbed on or in a porous support that is disposed in intimate contact and fluid communication with the electrolyte membrane.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: December 23, 2003
    Assignee: Proton Energy Systems, Inc.
    Inventors: Thomas Skoczylas, Matthew Christopher, Jason K. Shiepe, Mark E. Dristy, Trent M. Molter
  • Patent number: 6660156
    Abstract: A temperature handling subsystem (12) for a pipe electrochemical polishing system (10) has a chiller (46) and associated heat exchanger (44) for cooling the acid electrolyte (24) circulating through a pipe (28) while a cathode (14) is drawn therethrough for the purpose of electropolishing the interior of the pipe (24). A temperature control method (48) has a temperature low enough decision operation (58) wherein a temperature indicating control (38) is used to determine if the chiller (46) should be activated. The electrolyte (24) is pumped by an electrolyte pump from an electrolyte reservoir (22) containing a temperature indicating controller (38) for determining the temperature of the electrolyte (24) and further containing an electric heater (36) for heating the electrolyte (24), as necessary.
    Type: Grant
    Filed: April 15, 2002
    Date of Patent: December 9, 2003
    Assignee: Therma Corporation, Inc.
    Inventor: Thomas A. Lorincz
  • Patent number: 6660138
    Abstract: The present invention is an electropolishing process and device for electropolishing an inner surface of a long tube, especially applied to a long tube of greater than two meters and a diameter range between 0.3 and 5 cm. Wherein, the present invention comprises at least one tube, and one complex electrode. An inner surface of the tube is for electropolishing process, and it is an anode as well. The electrode is a cathode and placed on a center of a partition. An end of electrode connects to a cable, the cable is driven by an axial mechanism to be moved the electrode toward the axial mechanism itself. Inside of the tube is full o electrolyte, which is an electrifying medium to connect both anode and cathode. Further, electrolyte cooperates with the electrode to perform the electropolishing process on the inner surface of tube.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: December 9, 2003
    Assignee: Industrial Technology Research Institute
    Inventors: Chun-Hung Lin, Chen-Der Tsai, Yun-Sheng Chung, Chin-Ching Wu, Yuh-Feng Chen, Hann-Tsong Wang
  • Patent number: 6660152
    Abstract: According to the invention, silicon nanoparticles are applied to a substrate using an electrochemical plating processes, analogous to metal plating. An electrolysis tank of an aqueous or non-aqueous solution, such as alcohol, ether, or other solvents in which the particles are dissolved operates at a current flow between the electrodes. In applying silicon nanoparticles to a silicon, metal, or non-conducting substrate, a selective area plating may be accomplished by defining areas of different conductivity on the substrate. Silicon nanoparticle composite platings and stacked alternating material platings are also possible. The addition of metal ions into the silicon nanoparticle solution produces a composite material plating. Either composite silicon nanoparticle platings or pure silicon nanoparticle platings may be stacked with each other or with convention metal platings.
    Type: Grant
    Filed: November 15, 2001
    Date of Patent: December 9, 2003
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Munir H. Nayfeh, Gennadiy Belomoin, Adam Smith, Taysir Nayfeh
  • Patent number: 6656340
    Abstract: A cell of advanced design for the production of aluminium by the electrolysis of an aluminium compound dissolved in a molten electrolyte, has a cathode (30) of drained configuration, and at least one non-carbon anode (10) facing the cathode both covered by the electrolyte (54). The upper part of the cell contains a removable thermic insulating cover (60) placed just above the level of the electrolyte (54). Preferably, the cathode (30) comprises a cathode mass (32) supported by a cathode carrier (31) made of electrically conductive material which serves also for the uniform distribution of electric current to the cathode mass (32) from current feeders (42) which connect the cathode carrier (31) to the negative busbars.
    Type: Grant
    Filed: June 4, 2002
    Date of Patent: December 2, 2003
    Assignee: Moltech Invent S.A.
    Inventors: Vittorio de Nora, Jainagesh A. Sekhar
  • Patent number: 6656339
    Abstract: Methods of forming a nano-supported catalyst on a substrate and at least one carbon nanotube on the substrate are comprised of configuring a substrate with an electrode (102), immersing the substrate with the electrode into a solvent containing a first metal salt and a second metal salt (104) and applying a bias voltage to the electrode such that a nano-supported catalyst is at least partly formed with the first metal salt and the second metal salt on the substrate at the electrode (106). In addition, the method of forming at least one carbon nanotube is comprised of conducting a chemical reaction process such as catalytic decomposition, pyrolysis, chemical vapor deposition, or hot filament chemical vapor deposition o grow at least one nanotube on the surface of the nano-supported catalyst (108).
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: December 2, 2003
    Assignee: Motorola, Inc.
    Inventors: Albert A. Talin, Bernard F. Coll, Kenneth A. Dean, Matthew Stainer
  • Patent number: 6652733
    Abstract: A method of operating a reactor for removing impurities by electrochemical means from liquids, such as aqueous solutions. The liquid is passed through series of plateshaped reaction electrodes electrically insulated against each other with a liquid speed above a minimum to prevent dissociation into constituent gases, but sufficient to ensure interaction with an electrical current passing between the plateshaped electrodes. The latter has corrugated forms and/or their surfaces provided with embossed relief patterns to enhance the electrochemical effect between the electrodes. The conductivity of the treated liquid, the organic contents of the liquid and the flow of the liquid is measured and the length of the flow path for the liquid in the reactor is established in dependence on the measured parameters. Ultrasonic vibrations are generated in the flow path for stimulating a reaction process.
    Type: Grant
    Filed: September 10, 2001
    Date of Patent: November 25, 2003
    Assignee: Adept Technologies A/S
    Inventor: David Napper
  • Patent number: 6652726
    Abstract: A method for reducing or avoiding semiconductor wafer peripheral defects and contamination during and following electrodeposition including providing a wafer chuck assembly sealably attached to a back side of a semiconductor wafer leaving an exposed peripheral portion of the back side of the semiconductor wafer the backside parallel to a front side of the semiconductor wafer comprising a process surface; contacting at least the semiconductor process surface with a process solution; and, simultaneously directing a pressurized flow of gas onto the exposed peripheral portion such that the pressurized flow of gas covers the exposed peripheral portion including being radially directed outward toward the periphery of the semiconductor wafer.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: November 25, 2003
    Assignee: Taiwan Semiconductor Manufacturing Co. Ltd.
    Inventor: Shih-Wei Chou
  • Patent number: 6652719
    Abstract: An improved electrolysis system having components for separating gases, especially toxic gases produced along with electrolyzed liquids from the respective chambers of the electrolysis cell; for reprocessing and recovering the separated gas/es into useful products; and for treating new or used electrolyzed liquids obtained from the chambers of the electrolysis cell prior to discharge into the environment.
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: November 25, 2003
    Assignee: Skydon Corp.
    Inventor: Anthony Tseng
  • Patent number: 6652732
    Abstract: A fan flow sensor for a gas generating proton exchange member electrolysis cell includes a switching device and a sail disposed in communication with the switching device. The sail is pivotally mounted and movable in response to an airflow from a fan. The sail is further configured to actuate the switching device in response to the airflow from the fan.
    Type: Grant
    Filed: July 19, 2001
    Date of Patent: November 25, 2003
    Assignee: Proton Energy Systems, Inc.
    Inventors: Lawrence C. Moulthrop, Ricky S. Scott, Charles Bennet McCollough, Richard A. Dubey, Jr., A. John Speranza
  • Patent number: 6652727
    Abstract: A continuous layer of a metal is electrodeposited onto a substrate having both hydrodynamically inaccessible recesses and hydrodynamically accessible recesses on its surface by a two-step process in which the hydrodynamically inaccessible recesses are plated using a pulsed reversing current with cathodic pulses having a duty cycle of less than about 50% and anodic pulses having a duty cycle of greater than about 50% and the hydrodynamically accessible recesses are then plated using a pulsed reversing current with cathodic pulses having a duty cycle of greater than about 50% and anodic pulses having a duty cycle of less than about 50%.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: November 25, 2003
    Assignee: Faraday Technology Marketing Group, LLC
    Inventors: E. Jennings Taylor, Jenny J. Sun, Maria E. Inman
  • Patent number: 6645364
    Abstract: Disclosed is a method of analyzing components in an electroplating bath. Also disclosed is a method of controlling electroplating baths by monitoring the components of the plating bath in real-time.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: November 11, 2003
    Assignee: Shipley Company, L.L.C.
    Inventors: Jeffrey M. Calvert, Robert A. Binstead
  • Patent number: 6641710
    Abstract: To provide a method of metal plating to give a metal plating coating with excellent luster and high corrosion resistance and wear resistance. This metal plating method includes pulse plating by pulsed electrolysis by periodically applying electric current. The pulsed electrolysis is carried out in condition that the pulse frequency and the current density are controlled so that the ratio of the quantity of deposited lattice per pulse to the height of the lattice is 0.28 or lower, that the duty ratio of the pulse frequency is controlled to be 0.5 or lower, and that the duration of complete pause caused by distortion of pulse waveform is controlled to be one half or longer of the duration of current interruption. The foregoing plating is carried out while fluidizing plating solution to be brought into contact with the object body 5 at a flow rate of 0.04 (m/s) or higher and making the solution evenly flow along the face to be plated.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: November 4, 2003
    Assignee: Soqi, Inc.
    Inventors: Yasuo Sakura, Itoyo Tsuchiya, Keiko Mano