Patents Examined by William Coleman
  • Patent number: 10770654
    Abstract: A MTJ stack is deposited on a bottom electrode. A top electrode layer and hard mask are deposited on the MTJ stack. The top electrode layer not covered by the hard mask is etched. Thereafter, a first spacer layer is deposited over the patterned top electrode layer and the hard mask. The first spacer layer is etched away on horizontal surfaces leaving first spacers on sidewalls of the patterned top electrode layer. The free layer not covered by the hard mask and first spacers is etched. Thereafter, the steps of depositing a subsequent spacer layer over patterned previous layers, etching away the subsequent spacer layer on horizontal surfaces leaving subsequent spacers on sidewalls of the patterned previous layers, and thereafter etching a next layer not covered by the hard mask and subsequent spacers are repeated until all layers of the MTJ stack have been etched to complete the MTJ structure.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: September 8, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi Yang, Dongna Shen, Yu-Jen Wang
  • Patent number: 10770626
    Abstract: In accordance with certain embodiments, electronic devices feature a polymeric binder, a frame defining an aperture therethrough, and a semiconductor die (e.g., light-emitting or a light-detecting element) suspended in the binder and within the aperture of the frame.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: September 8, 2020
    Assignee: EPISTAR CORPORATION
    Inventors: Michael A. Tischler, Alborz Amini, Thomas Pinnington, Henry Ip, Gianmarco Spiga
  • Patent number: 10770299
    Abstract: A semiconductor device includes a semiconductor fin and a gate structure. The semiconductor fin extends along a first direction above a substrate. The gate structure extends across the semiconductor fin along a second direction substantially perpendicular to the first direction. The gate structure includes a chlorine-containing N-work function metal layer wrapping around the semiconductor fin, and a filling metal over and in contact with the chlorine-containing N-work function metal layer.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: September 8, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Li-Jung Liu, Chun-Sheng Liang, Shu-Hui Wang
  • Patent number: 10764989
    Abstract: An integrated circuit package having excellent heat dissipation is described. An integrated circuit die is attached to a substrate and the substrate is mounted on a printed circuit board (PCB) wherein there is a gap between a surface of the die facing the PCB and the PCB. A thermal enhanced layer is formed within the gap wherein heat travels from the die through the thermal enhanced layer to the PCB.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: September 1, 2020
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Tung Ching Lui, Baltazar Canete, Rajesh Aiyandra
  • Patent number: 10763101
    Abstract: There is provided a technique that includes forming a first film including a ring-shaped structure composed of silicon and carbon and containing nitrogen so as to fill a recess formed in a surface of a substrate by performing a cycle a predetermined number of times, and performing post-treatment by supplying an oxidizing agent to the substrate under a condition that the ring-shaped structure included in the first film is preserved. The cycle includes non-simultaneously performing supplying a precursor including the ring-shaped structure and containing halogen to the substrate with the recess formed in the surface, and supplying a nitriding agent to the substrate, wherein the cycle is performed under a condition that the ring-shaped structure included in the precursor is preserved.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: September 1, 2020
    Assignee: KOKUSAI ELECTRIC CORPORATION
    Inventors: Yoshitomo Hashimoto, Takafumi Nitta, Hiroki Yamashita
  • Patent number: 10755988
    Abstract: A method of determining a bonding status between wire and at least one bonding location of a semiconductor device is provided. The method includes the steps of: (a) bonding a portion of wire to at least one bonding location of a semiconductor device using a bonding tool of a wire bonding machine; and (b) detecting whether another portion of wire engaged with the bonding tool, and separate from the portion of wire, contacts the portion of wire in a predetermined height range, thereby determining if the portion of wire is bonded to the at least one bonding location.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: August 25, 2020
    Assignee: KULICKE AND SOFFA, INDUSTRIES, INC.
    Inventor: Gary S. Gillotti
  • Patent number: 10749313
    Abstract: A method for manufacturing a semiconductor element includes: providing a nitride semiconductor layer; performing plasma treatment to at least part of a surface of the nitride semiconductor layer in an oxygen-containing atmosphere while applying bias power; after the performing of the plasma treatment, heat treating the nitride semiconductor layer in an oxygen-containing atmosphere; forming a protective film on a region of the surface of the nitride semiconductor layer where the plasma treatment was performed; and forming an electrode in a region of the surface of the nitride semiconductor layer where the protective film was not formed.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: August 18, 2020
    Assignee: NICHIA CORPORATION
    Inventors: Eiji Muramoto, Akinori Kishi
  • Patent number: 10748975
    Abstract: A display device includes a substrate with a first subpixel area and a second subpixel area adjacent to one side of the first subpixel area; an insulating layer on the substrate having a first recessed portion on the first subpixel area, a second recessed portion on the second subpixel area and a convex portion between the first recessed portion and the second recessed portion; a reflective electrode on the insulating layer including first and second reflective electrodes on the first and second recessed portions, respectively; a first electrode including a first sub electrode on the first reflective electrode and a second sub electrode on the second reflective electrode; an organic light emitting layer on the first electrode; a bank provided between the first subpixel area and the second subpixel area while covering an end of the first electrode; a second electrode on the organic light emitting layer; and a light path change structure on the second electrode while being overlapping the bank.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: August 18, 2020
    Assignee: LG Display Co., Ltd.
    Inventors: Wooram Youn, Jaehyung Yu
  • Patent number: 10741514
    Abstract: Wafers include a contact pad on a surface of a bulk redistribution layer. A final redistribution layer is formed on the surface and in contact with the contact pad. Solder is formed on the contact pad. The solder includes a pedestal portion formed to a same height as the final redistribution layer and a ball portion above the pedestal portion.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: August 11, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Toyohiro Aoki, Takashi Hisada, Eiji I. Nakamura
  • Patent number: 10741696
    Abstract: A semiconductor device includes a thin film transistor including a semiconductor layer, a gate electrode, a gate insulating layer, a source electrode, a drain electrode, the semiconductor layer includes a layered structure including a first oxide semiconductor layer including In and Zn, in which an atomic ratio of In with respect to all metallic elements included in the first oxide semiconductor layer is higher than an atomic ratio of Zn, a second oxide semiconductor layer including In and Zn, in which an atomic ratio of Zn with respect to all metallic elements included in the second oxide semiconductor layer is higher than an atomic ratio of In, and an intermediate oxide semiconductor layer arranged between the first oxide semiconductor layer and the second oxide semiconductor layer, and the first and second oxide semiconductor layers are crystalline oxide semiconductor layers, and the intermediate oxide semiconductor layer is an amorphous oxide semiconductor layer, and the first oxide semiconductor layer is
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: August 11, 2020
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Masahiko Suzuki, Hajime Imai, Hideki Kitagawa, Tetsuo Kikuchi, Setsuji Nishimiya, Teruyuki Ueda, Kengo Hara, Tohru Daitoh, Toshikatsu Itoh
  • Patent number: 10727337
    Abstract: A semiconductor device includes a memory circuit and a logic circuit. The memory circuit includes a word line, a bit line, a common line and a memory transistor having a gate coupled to the word line, a drain coupled to the bit line and a source coupled to the common line. The logic circuit includes a field effect transistor (FET) having a gate, a drain and a source. The memory transistor has a gate electrode layer formed on a gate dielectric layer, and the gate dielectric layer includes a first insulating layer and a first ferroelectric (FE) material layer. The FET has a gate electrode layer formed on a gate dielectric layer, and the gate dielectric layer includes a second insulating layer and a second FE material layer.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: July 28, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Chi Tu, Jen-Sheng Yang, Sheng-Hung Shih, Tong-Chern Ong, Wen-Ting Chu
  • Patent number: 10727169
    Abstract: A semiconductor device includes a semiconductor element, a plurality of leads electrically connected to the semiconductor element and one of which supports the semiconductor element, a sealing resin covering the semiconductor element and a portion of each leads, and first and second plating layers exposed from the sealing resin. The sealing resin includes a resin side surface facing in a first direction perpendicular to the thickness direction. At least one of the leads has a lead end surface connected to its back surface and flush with the resin side surface. The first plating layer covers the back surface of the lead. The second plating layer covers the lead end surface and projects in the first direction relative to the resin side surface. An edge of the second plating layer overlaps with the first plating layer as viewed in the first direction.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: July 28, 2020
    Assignee: ROHM CO., LTD.
    Inventor: Koshun Saito
  • Patent number: 10720605
    Abstract: A device with light emitting elements can prevent interfacial peeling of a plurality of layers. The device with light emitting elements includes: a substrate including an emission area in which the light emitting elements are arranged and a non-emission area that surrounds the emission area; a first organic film that covers the emission area and has a first modulus of elasticity; a second organic film that is disposed on the first organic film and has a second modulus of elasticity which is greater than the first modulus of elasticity; and a metal film that is disposed on the second organic film and has a third modulus of elasticity which is greater than the second modulus of elasticity.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: July 21, 2020
    Assignee: LG Display Co., Ltd.
    Inventor: Tae-Kyung Kim
  • Patent number: 10714574
    Abstract: A shield trench power device such as a trench MOSFET or IGBT employs a gate structure with an underlying polysilicon shield region that contacts a shield region in an epitaxial or crystalline layer of the device.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: July 14, 2020
    Assignee: iPower Semiconductor
    Inventor: Hamza Yilmaz
  • Patent number: 10714432
    Abstract: In some embodiments, a semiconductor device is provided. The semiconductor device includes an isolation structure disposed in a semiconductor substrate, where an inner perimeter of the isolation structure demarcates a device region of the semiconductor substrate. A gate is disposed over the device region, where an outer perimeter of the gate is disposed within the inner perimeter of the isolation structure. A first source/drain region is disposed in the device region and on a first side of the gate. A second source/drain region is disposed in the device region and on a second side of the gate opposite the first side. A silicide blocking structure partially covers the gate, partially covers the first source/drain region, and partially covers the isolation structure, where a first sidewall of the silicide blocking structure is disposed between first opposite sidewalls of the gate.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: July 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Chang Cheng, Fu-Yu Chu, Ruey-Hsin Liu
  • Patent number: 10714358
    Abstract: A semiconductor device for high power application in which a novel semiconductor material having high mass productivity is provided. An oxide semiconductor film is formed, and then, first heat treatment is performed on the exposed oxide semiconductor film in order to reduce impurities such as moisture or hydrogen in the oxide semiconductor film. Next, in order to further reduce impurities such as moisture or hydrogen in the oxide semiconductor film, oxygen is added to the oxide semiconductor film by an ion implantation method, an ion doping method, or the like, and after that, second heat treatment is performed on the exposed oxide semiconductor film.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: July 14, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Junichiro Sakata, Hiroki Ohara
  • Patent number: 10700079
    Abstract: A nonvolatile memory device and a method of manufacturing the device, the device including a first semiconductor layer, the first semiconductor layer including an upper substrate, and a memory cell array, the memory cell array including a plurality of gate conductive layers stacked on the upper substrate and a plurality of pillars passing through the plurality of gate conductive layers and extending in a direction perpendicular to a top surface of the upper substrate; and a second semiconductor layer under the first semiconductor layer, the second semiconductor layer including a lower substrate, at least one contact plug between the lower substrate and the upper substrate, and a common source line driver on the lower substrate and configured to output a common source voltage for the plurality of pillars through the at least one contact plug.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: June 30, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: June-hong Park, Bong-soon Lim, Il-han Park
  • Patent number: 10692920
    Abstract: Integrated circuits and methods of producing the same are provided. In an exemplary embodiment, an integrated circuit includes a photodetector, where the photodetector includes an impingement photodetector well and a base photodetector well. A transfer transistor overlies the photodetector, where the transfer transistor includes a transfer gate, a source, and a drain. A source contact is electrically connected to the source, and the source contact is also electrically connected to the photodetector.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: June 23, 2020
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Ping Zheng, Eng Huat Toh
  • Patent number: 10686085
    Abstract: An electronics assembly includes a first cooling chip made of a semiconductor material, and at least one subassembly mounted on the first cooling chip. The first cooling chip includes at least one metallization layer on a portion of a first surface of the first cooling chip, at least one inlet through a second surface of the first cooling chip, wherein the second surface is opposite to the first surface, at least one outlet through the second surface of the first cooling chip, and one or more micro-channels extending between and fluidly coupled to the at least one inlet and the at least one outlet. The at least one subassembly includes one or more photonic cores positioned to receive light from a light source, wherein the one or more photonic cores comprise a wide band gap semiconductor material.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: June 16, 2020
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Ercan M. Dede
  • Patent number: 10685883
    Abstract: A method of wafer dicing and a die are provided. The method includes the following processes. A wafer is provided, the wafer includes a plurality of die regions and a scribe region between the die regions. The scribe region includes a substrate, and a dielectric layer and a test structure on the substrate, the test structure is disposed in the dielectric layer. A first removal process is performed to remove the test structure and the dielectric layer around the test structure, so as to expose the substrate. The first removal process includes performing a plurality of etching cycles, and each etching cycle includes performing a first etching process to remove a portion of the test structure and performing a second etching process to remove a portion of the dielectric layer. A second removal process is performed to remove the substrate in the scribe region, so as to form a plurality of dies separated from each other.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: June 16, 2020
    Assignee: Winbond Electronics Corp.
    Inventors: Cheng-Hong Wei, Hung-Sheng Chen, Ching-Wei Chen, Shuo-Che Chang