Patents Examined by William F. Kraig
  • Patent number: 10580885
    Abstract: Dual-base two-sided bipolar power transistors which use an insulated field plate to separate the emitter/collector diffusions from the nearest base contact diffusion. This provides a surprising improvement in turn-off performance, and in breakdown voltage.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: March 3, 2020
    Assignee: Ideal Power, Inc.
    Inventors: William C. Alexander, Richard A. Blanchard
  • Patent number: 10573658
    Abstract: A method of manufacturing three-dimensional semiconductor device includes the steps of: forming a stack structure of a plurality of a first material layers and a second material layers on a substrate in the memory cell region; etching the stack structure to form a plurality of trenches; forming channel layers in the plurality of trenches; and reducing the surface roughness and the interface state by performing annealing treatment to at least one surface of the channel layers.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: February 25, 2020
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventor: Zongliang Huo
  • Patent number: 10559663
    Abstract: A semiconductor device is provided, including: a semiconductor substrate; a transistor section provided in the semiconductor substrate; and a diode section provided in the semiconductor substrate being adjacent to the transistor section, wherein the diode section includes: a second conductivity-type anode region; a first conductivity-type drift region; a first conductivity-type cathode region; a plurality of dummy trench portions arrayed along a predetermined array direction; a contact portion provided along an extending direction of the plurality of dummy trench portions that is different from the array direction; and a lower-surface side semiconductor region provided directly below a portion of the contact portion at an outer end in the extending direction.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: February 11, 2020
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Tatsuya Naito
  • Patent number: 10553483
    Abstract: A method of fabricating a semiconductor interconnect structure by providing a semiconductor structure with a dielectric layer with and an embedded electrically conductive structure. A dielectric capping layer and a metal capping layer separating a second dielectric layer located above the first dielectric layer. The segment of metal capping layer covers at least a portion of a top surface of the first electrically conductive structure. Exposing parts of both the first electrically conductive structure and the dielectric capping layer by forming an opening in the second dielectric layer and the metal capping layer. Forming a second electrically conductive structure in the opening, such that (i) the second electrically conductive structure is located over part of the dielectric capping layer, and (ii) the second electrically conductive structure is in electrical contact with the first electrically conductive structure.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: February 4, 2020
    Assignee: International Business Machines Corporation
    Inventors: Conal E. Murray, Chih-Chao Yang
  • Patent number: 10553476
    Abstract: A semiconductor device includes a substrate. The semiconductor device further includes a first polysilicon structure over the substrate. The first polysilicon structure has a first grain size. The semiconductor device further includes a first barrier layer over the first polysilicon structure. At least one grain boundary of the first polysilicon structure contacts the first barrier layer. The semiconductor device further includes a second polysilicon structure over the first barrier layer. The second polysilicon layer has a second grain size smaller than the first grain size.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: February 4, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: J. J. Lee, Chun-Tse Tsai, M. C. Hang
  • Patent number: 10546922
    Abstract: A method for fabricating semiconductor device is disclosed. First, a substrate is provided, and a gate structure is formed on the substrate. Next, a recess is formed adjacent to two sides of the gate structure, and an epitaxial layer is formed in the recess, in which a top surface of the epitaxial layer is lower than a top surface of the substrate. Next, a cap layer is formed on the epitaxial layer, in which a top surface of the cap layer is higher than a top surface of the substrate.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: January 28, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Kai Hsu, Ssu-I Fu, Yu-Hsiang Hung, Wei-Chi Cheng, Jyh-Shyang Jenq, Tsung-Mu Yang
  • Patent number: 10546836
    Abstract: A multi-layer wafer and method of manufacturing such wafer are provided. The method includes creating under bump metallization (UMB) pads on each of the two heterogeneous wafers; applying a conductive means above the UMB pads on at least one of the two heterogeneous wafers; and low temperature bonding the two heterogeneous wafers to adhere the UMB pads together via the conductive means. At least one stress compensating polymer layer may be applied to at least one of two heterogeneous wafers. The multi-layer wafer comprises two heterogeneous wafers, each of the heterogeneous wafer having UMB pads and at least one of the heterogeneous wafers having a stress compensating polymer layer and a conductive means applied above the UMB pads on at least one of the two heterogeneous wafers. The two heterogeneous wafers low temperature bonded together to adhere the UMB pads together via the conductive means.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: January 28, 2020
    Assignee: International Business Machines Corporation
    Inventors: Bing Dang, Li-Wen Hung, John U. Knickerbocker, Jae-Woong Nah
  • Patent number: 10541261
    Abstract: An optical sensor device includes a semiconductor substrate including a conversion region to convert an electromagnetic signal into photo-generated charge carriers, a read-out node configured to read-out a first portion of the photo-generated charge carriers, a control electrode, which is formed in a trench extending into the semiconductor substrate, and a doping region in the semiconductor substrate, where the doping region is adjacent to the trench, where the doping region has a doping type different from the read out node, and where the doping region has a doping concentration so that the doping region remains depleted during operation.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: January 21, 2020
    Assignees: Infineon Technologies AG, pmdtechnologies ag
    Inventors: Robert Roessler, Henning Feick, Matthias Franke, Dirk Offenberg, Stefano Parascandola, Jens Prima
  • Patent number: 10535562
    Abstract: A processing method for a workpiece includes: a holding step of holding the workpiece by a chuck table; a groove forming step of moving the chuck table in a processing feeding direction at a first speed, and sequentially cutting a plurality of division lines extending in a first direction by a first cutting blade to form the workpiece with grooves along the division lines; a first deep-cutting step of further cutting the grooves, by a second cutting blade, to thereby deep-cut the grooves, during when the groove forming step is performed; and a second deep-cutting step of moving the chuck table in the processing feeding direction at a second speed higher than the first speed, and further cutting by the second cutting blade those of the grooves which have not been deep-cut in the first deep-cutting step, to thereby deep-cut those grooves, after the groove forming step.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: January 14, 2020
    Assignee: DISCO CORPORATION
    Inventor: Hideaki Tanaka
  • Patent number: 10535676
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a plurality of upper electrodes separated from a semiconductor substrate by a first dielectric layer. A lower electrode is laterally disposed between the plurality of upper electrodes and between sidewalls of the semiconductor substrate. A second dielectric layer lines opposing sidewalls and a lower surface of the lower electrode. The second dielectric layer laterally separates the lower electrode from the plurality of upper electrodes and from the sidewalls of the semiconductor substrate.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: January 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wan-Chen Chen, Yu-Hsiung Wang, Han-Yu Chen
  • Patent number: 10535797
    Abstract: A method of manufacturing a light emitting diode is provided. The method includes forming a semiconductor layer on a substrate, forming a mask layer including a plurality of grooves on the semiconductor layer, forming a plurality of nanostructures in the plurality of grooves, respectively, forming an etched region by etching an outer region of the semiconductor layer and an inner region of the semiconductor layer different from the outer region, forming a first electrode on the etched region of the semiconductor layer, forming an insulation layer on the first electrode, and forming a second electrode on the insulation layer and the plurality of nanostructures.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: January 14, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jae-seok Kim, Jin-hee Kang, Ji-hoon Kang
  • Patent number: 10529834
    Abstract: Some embodiments include methods of forming charge storage transistor gates and standard FET gates in which common processing is utilized for fabrication of at least some portions of the different types of gates. FET and charge storage transistor gate stacks may be formed. The gate stacks may each include a gate material, an insulative material, and a sacrificial material. The sacrificial material is removed from the FET and charge storage transistor gate stacks. The insulative material of the FET gate stacks is etched through. A conductive material is formed over the FET gate stacks and over the charge storage transistor gate stacks. The conductive material physically contacts the gate material of the FET gate stacks, and is separated from the gate material of the charge storage transistor gate stacks by the insulative material remaining in the charge storage transistor gate stacks. Some embodiments include gate structures.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: January 7, 2020
    Assignee: Micron Technology, Inc.
    Inventor: Yongjun Jeff Hu
  • Patent number: 10529781
    Abstract: An organic light-emitting diode (OLED) display panel and an OLED display device are provided. The (OLED) display panel includes a first substrate; a first electrode layer disposed on the first substrate and including a plurality of first electrodes; a plurality of light-emitting devices disposed on a surface of the first electrode layer far away from the first substrate and having m number of colors, where m is a positive integer; and a second electrode layer disposed on a surface of the plurality of light-emitting devices far away from the first electrode layer. One light-emitting device corresponds to one color, and given a predetermined value of brightness, the light-emitting devices of two different colors are configured to have a predetermined absolute value of a threshold voltage difference.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: January 7, 2020
    Assignees: SHANGHAI TIANMA AM-OLED CO., LTD., TIANMA MICRO-ELECTRONICS CO., LTD.
    Inventors: Xiangcheng Wang, Jinghua Niu, Wei He, Yuji Hamada, Chen Liu, Honggang Yan
  • Patent number: 10529711
    Abstract: A method for manufacturing a semiconductor device includes forming one or more fins extending in a first direction over a substrate. The one or more fins include a first region along the first direction and second regions on both sides of the first region along the first direction. A dopant is implanted in the first region of the fins but not in the second regions. A gate structure overlies the first region of the fins and source/drains are formed on the second regions of the fins.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: January 7, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Chung Chen, Chi-Feng Huang, Victor Chiang Liang, Fu-Huan Tsai, Hsieh-Hung Hsieh, Tzu-Jin Yeh, Han-Min Tsai, Hong-Lin Chu
  • Patent number: 10522424
    Abstract: A method for fabricating a semiconductor device having a substantially undoped channel region includes providing a substrate having a fin extending from the substrate. An in-situ doped layer is formed on the fin. By way of example, the in-situ doped layer may include an in-situ doped well region formed by an epitaxial growth process. In some examples, the in-situ doped well region includes an N-well or a P-well region. After formation of the in-situ doped layer on the fin, an undoped layer is formed on the in-situ doped layer, and a gate stack is formed over the undoped layer. The undoped layer may include an undoped channel region formed by an epitaxial growth process. In various examples, a source region and a drain region are formed adjacent to and on either side of the undoped channel region.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: December 31, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun Hsiung Tsai, Wei-Yuan Lu
  • Patent number: 10522569
    Abstract: Display panels including mirror pixel layouts and power rail bridges are described. In an embodiment, a display panel includes a plurality of power rail bridges joining together a subset of power rails for a plurality of adjacent mirror pixels within a row of mirror pixels.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: December 31, 2019
    Assignee: Apple Inc.
    Inventors: Shinya Ono, Chin-Wei Lin, Hung Sheng Lin
  • Patent number: 10522640
    Abstract: Gate structures and methods of forming the gate structures are described. In some embodiments, a method includes forming source/drain regions in a substrate, and forming a gate structure between the source/drain regions. The gate structure includes a gate dielectric layer over the substrate, a work function tuning layer over the gate dielectric layer, a first metal over the work function tuning layer, an adhesion layer over the first metal, and a second metal over the adhesion layer. In some embodiments, the adhesion layer can include an alloy of the first and second metals, and may be formed by annealing the first and second metals. In other embodiments, the adhesion layer can include an oxide of at least one of the first and/or second metal, and may be formed at least in part by exposing the first metal to an oxygen-containing plasma or to a natural environment.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: December 31, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shiu-Ko JangJian, Chi-Wen Liu, Chih-Nan Wu, Chun Che Lin
  • Patent number: 10522666
    Abstract: A method for fabricating an anode-shorted field stop insulated gate bipolar transistor (IGBT) comprises selectively forming first and second semiconductor implant regions of opposite conductivity types. A field stop layer of a second conductivity type can be grown onto or implanted into the substrate. An epitaxial layer can be grown on the substrate or on the field stop layer. One or more insulated gate bipolar transistors (IGBT) component cells are formed within the epitaxial layer.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: December 31, 2019
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Anup Bhalla, Madhur Bobde, Yongping Ding, Xiaotian Zhang, Yueh-Se Ho
  • Patent number: 10515878
    Abstract: Embodiments of the present invention are directed to a semiconductor package with partial plating on contact side surfaces. The semiconductor package includes a top surface, a bottom surface opposite the top surface, and side surfaces between the top and bottom surfaces. Contacts are located on peripheral edges of the bottom surface. Each of the contacts includes a first surface that is flush with the bottom surface, a second surface that is flush with one of the side surfaces, and a third surface between the first surface and the second surface. Each of the side surfaces can include a step such that the area of the bottom surface is differently sized from the area of the top surface and the third surface is located at the step. The first surface is plated, while the second surface is exposed (not plated). At least a portion of the third surface is plated.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: December 24, 2019
    Assignee: Utac Headquarters PTE Ltd.
    Inventors: Somchai Nondhasitthichai, Saravuth Sirinorakul, Woraya Benjasukul
  • Patent number: 10510670
    Abstract: A package includes a corner, a device die, a plurality of redistribution lines underlying the device die, and a plurality of non-solder electrical connectors underlying and electrically coupled to the plurality of redistribution lines. The plurality of non-solder electrical connectors includes a corner electrical connector. The corner electrical connector is elongated. An electrical connector is farther away from the corner than the corner electrical connector, wherein the electrical connector is non-elongated.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Shin-Puu Jeng, Der-Chyang Yeh, Hsien-Wei Chen