Patents Examined by Xiaowei Su
  • Patent number: 10632436
    Abstract: A hydrogen, lithium, and lithium hydride processing apparatus includes a hot zone to heat solid-phase lithium hydride to form liquid-phase lithium hydride; a vacuum source to extract hydrogen and gaseous-phase lithium metal from the liquid-phase lithium hydride; a cold zone to condense the gaseous-phase lithium metal as purified solid-phase lithium metal; and a heater to melt the purified solid-phase lithium metal in the cold zone and form refined liquid-phase lithium metal in the hot zone.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: April 28, 2020
    Assignee: Consolidated Nuclear Security, LLC
    Inventors: Sam W. Brown, Larry S. Spencer, Michael R. Phillips, G. Louis Powell, Peggy J. Campbell
  • Patent number: 10629340
    Abstract: In one embodiment, a permanent magnet includes: a composition expressed by RpFeqMrCusCo100-p-q-r-s (R is a rare-earth element, M is at least one element selected from Zr, Ti, and Hf, 10?p?13.5 at %, 25?q?40 at %, 1.35?r?1.75 at %, and 0.88?s?13.5 at %); and a metallic structure including Th2Zn17 crystal phases each having a Fe concentration of 25 at % or more, and Cu-rich crystal phases each having a Cu concentration of from 25 at % to 70 at %. An average thickness of the Cu-rich crystal phases is 20 nm or less, and an average distance between the Cu-rich crystal phases is 200 nm or less.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: April 21, 2020
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Tsuyoshi Kobayashi, Keiko Okamoto, Masaya Hagiwara, Masaki Endo
  • Patent number: 10614952
    Abstract: A sintered magnet body (RaT1bMcBd) coated with a powder mixture of an intermetallic compound (R1iM1j, R1xT2yM1z, R1iM1jHk), alloy (M1dM2e) or metal (M1) powder and a rare earth (R2) oxide is diffusion treated. The R2 oxide is partially reduced during the diffusion treatment, so a significant amount of R2 can be introduced near interfaces of primary phase grains within the magnet through the passages in the form of grain boundaries. The coercive force is increased while minimizing a decline of remanence.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: April 7, 2020
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Hiroaki Nagata, Tadao Nomura, Takehisa Minowa
  • Patent number: 10614937
    Abstract: An R-T-B based rare earth permanent magnet is expressed by formula: (R11-x(Y1-y-z Cey Laz)x)aTbBcMd in which, R1 is one or more kinds of rare earth element not including Y, Ce and La, “T” is one or more kinds of transition metal, and includes Fe or Fe and Co as an essential component, “M” is an element having Ga or Ga and one or more of Sn, Bi and Si, 0.4?x?0.7, 0.00?y+z?0.20, 0.16?a/b?0.28, 0.050?c/b?0.070, 0.005?d/b?0.028, 0.25?(a-2c)/(b-14c)?2.00 and 0.025?d/(b-14c)?0.500. The magnet has a structure having a main phase, having a compound having a R2T14B type tetragonal structure, and a grain boundary phase, on an arbitrary cross sectional area, an area ratio of R-T-M, T-rich and R-rich phases, with respect to a total grain boundary phase area is 10.0% or more, 60.0% or less and 70.0% or less, respectively, and the coating rate of the grain boundary phase is 70.0% or more.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: April 7, 2020
    Assignee: TDK CORPORATION
    Inventors: Shota Miyazaki, Keiji Takeda
  • Patent number: 10612115
    Abstract: The invention relates to a method for producing a strip made of an AlMgSi alloy in which a rolling ingot is cast of an AlMgSi alloy, the rolling ingot is subjected to homogenization, the rolling ingot which has been brought to rolling temperature is hot-rolled, and then is optionally cold-rolled to the final thickness thereof. The problem of providing a method for producing an aluminum strip made of an AlMgSi alloy and an aluminum strip, which has a higher breaking elongation with constant strength and therefore enables higher degrees of deformation in producing structured metal sheets, is solved in that the hot strip has a temperature of no more than 130° C. directly at the exit of the last rolling pass, preferably a temperature of no more than 100° C., and the hot strip is coiled at that or a lower temperature.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: April 7, 2020
    Assignee: Hydro Aluminium Deutschland GmbH
    Inventors: Henk-Jan Brinkman, Thomas Wirtz, Dietmar Schröder, Eike Brünger, Kai-Friedrich Karhausen
  • Patent number: 10607755
    Abstract: Anisotropic rare earth magnet powder particles include R2TM14B1-type crystals of a tetragonal compound consisting of one or more rare earth element, B, and one or more transition element, and enveloping layers containing at least Nd and Cu. Surfaces of the R2TM14B1-type crystals are enveloped by the enveloping layers. The particles has an average crystal grain diameter of 0.05 to 1 ?m. The particles contain, when the whole particles are taken as 100 atomic %, 11.5 to 15 atomic % of total rare earth element (Rt); 5.5 to 8 atomic % of B; and about 0.05 atomic % to about 2 atomic % of Cu. The powder particles have an atomic ratio of Cu, which is a ratio of the total number of Cu atoms to a total number of atoms of Rt, falling within the range of 1 to 6%. The powder particles do not include dysprosium Dy, Tb, Ho and Ga. Coercivity of the magnetic powder is more than 955 kA/m.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: March 31, 2020
    Assignee: AICHI STEEL CORPORATION
    Inventors: Yoshinobu Honkura, Chisato Mishima, Masao Yamazaki
  • Patent number: 10594141
    Abstract: The present invention relates to a soft magnetic alloy and, more specifically, to a soft magnetic alloy used in electric transformers, pulse generators, compressions, electric chokes, energy-accumulating inductors, magnetic sensors, or the like, and a wireless power transmitting apparatus and wireless power receiving apparatus including the soft magnetic alloy.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: March 17, 2020
    Assignee: LG INNOTEK CO., LTD.
    Inventors: Seok Bae, Ji Yeon Song, Won Ha Moon, Jai Hoon Yeom, Sang Won Lee, Jong Hyuk Lee
  • Patent number: 10590505
    Abstract: A high-strength steel sheet having a composition containing C: 0.09% to 0.17%, Si: 0.6% to 1.7%, Mn: 3.5% or less, P: 0.03% or less, S: 0.005% or less, Al: 0.08% or less, N: 0.006% or less, Ti: 0.05% or less, and B: 0.0002% to 0.0030% on a mass basis, the remainder being Fe and inevitable impurities. The steel sheet also has a microstructure containing less than 20% (including 0%) of a ferrite phase, 75% or more (including 100%) of a tempered martensite phase, 10% or less (including 0%) of an untempered martensite phase, and less than 5% (including 0%) of a retained austenite phase in terms of area fraction. The tempered martensite phase has a Vickers hardness of 280 to 340 and a tensile strength of 950 MPa to 1,120 MPa.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: March 17, 2020
    Assignee: JFE STEEL CORPORATION
    Inventors: Noriaki Kohsaka, Yoshimasa Funakawa, Michitaka Sakurai, Yoshikazu Suzuki
  • Patent number: 10593461
    Abstract: There is provided a composite material containing magnetic powder and a polymeric material including the powder in a dispersion state, wherein a content of the magnetic powder with respect to the whole composite material is more than 50% by volume and 75% by volume or less, a saturation magnetic flux density of the composite material is 0.6 T or more, and a relative magnetic permeability of the composite material is more than 20 and is 35 or less. It is preferable that a density ratio of the magnetic powder should be 0.38 or more and 0.65 or less. The density ratio is set to be an apparent density/a true density. Moreover, it is preferable that the magnetic powder should include a plurality of particles constituted of the same material.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: March 17, 2020
    Assignees: Sumitomo Electric Industries, Ltd., Sumitomo Wiring Systems, Ltd., AutoNetworks Technologies, Ltd.
    Inventor: Kazuhiro Inaba
  • Patent number: 10593472
    Abstract: A step of, while a powder of an RLM alloy (where RL is Nd and/or Pr; M is one or more elements selected from among Cu, Fe, Ga, Co, Ni and Al) which is produced through atomization and a powder of an RH compound (where RH is Dy and/or Tb) are present on the surface of a sintered R-T-B based magnet, performing a heat treatment at a sintering temperature of the sintered R-T-B based magnet or lower is included. The RLM alloy contains RL in an amount of 65 at % or more, and the melting point of the RLM alloy is equal to or less than the temperature of the heat treatment. The heat treatment is performed while the RLM alloy powder and the RH compound powder are present on the surface of the sintered R-T-B based magnet at a mass ratio of RLM alloy:RH compound=9.6:0.4 to 5:5.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: March 17, 2020
    Assignee: HITACHI METALS, LTD.
    Inventor: Shuji Mino
  • Patent number: 10590515
    Abstract: New 6xxx aluminum alloys are disclosed. The new 6xxx aluminum alloys may include 1.05-1.50 wt. Mg, 0.60-0.95 wt. % Si, where the (wt. % Mg)/(wt. % Si) is from 1.30 to 1.90, 0.275-0.50 wt. % Cu, and from 0.05 to 1.0 wt. % of at least one secondary element, wherein the secondary element is selected from the group consisting of V, Fe, Cr, Mn, Zr, Ti, and combinations thereof.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: March 17, 2020
    Assignee: ARCONIC INC.
    Inventors: Jen C. Lin, Anton J. Rovito, Timothy P. Doyle, Shawn P. Sullivan, Gabriele F. Ciccola, Christopher J. Tan
  • Patent number: 10586636
    Abstract: A rare earth magnet and a motor including the same are provided. The rare earth magnet is based on an R—Fe—B alloy (R represents at least one rare-earth element comprising Y), wherein a plating layer of the element Co is formed on a surface of the rare earth magnet by an electroplating method.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: March 10, 2020
    Assignee: LG INNOTEK CO., LTD.
    Inventors: Jong Soo Han, Seok Bae, Hee Jung Lee, Jai Hoon Yeom, Sang Won Lee
  • Patent number: 10580571
    Abstract: A method producing soft magnetic strip material for roll tape-wound cores with the following steps: preparing a band-shaped material, applying a heat-treatment temperature to the band-shaped material, and applying a tensile force to the temperature-applied band-shaped material in one longitudinal direction of the band-shaped material in order to produce a tensile stress in the band-shaped material, to produce the soft magnetic strip material from the band-shaped material, the method, moreover, comprising determining at least one magnetic measurement value of the soft magnetic strip material that has been produced and controlling the tensile force for setting the tensile stress in a reaction to the determined magnetic measurement value. Furthermore, a device for carrying out the method and a roll tape-wound core produced by means of the method are made available.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: March 3, 2020
    Assignee: VACUUMSCHMELZE GMBH & CO. KG
    Inventor: Christian Polak
  • Patent number: 10573437
    Abstract: In one embodiment, a permanent magnet includes: a composition expressed by RpFeqMrCusCo100-p-q-r-s (R is a rare-earth element, M is at least one element selected from Zr, Ti, and Hf, 10.8?p?13.5 at %, 28?q?40 at %, 0.88?r?7.2 at %, and 3.5?s?13.5 at %); and a metallic structure including a cell phase having a Th2Zn17 crystal phase, and a cell wall phase. A Cu concentration in the cell wall phase is in a range from 30 at % to 70 at %.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: February 25, 2020
    Assignee: KABUSHIKI KAISHA Toshiba
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Tsuyoshi Kobayashi, Keiko Okamoto, Masaya Hagiwara
  • Patent number: 10573438
    Abstract: An R—(Fe,Co)—B base sintered magnet consisting essentially of 12-17 at % of R containing Nd and Pr, 0.1-3 at % of M1 (typically Si), 0.05-0.5 at % of M2 (typically Ti), B, and the balance of Fe, and containing R2(Fe,Co)14B as a main phase has a coercivity of at least 10 kOe. The magnet contains a M2 boride phase at a grain boundary triple junction, and has a core/shell structure that the main phase is covered with a grain boundary phase. The grain boundary phase is composed of an amorphous and/or nanocrystalline R?—(Fe,Co)—M1? phase consisting essentially of 25-35 at % of R? containing Pr, 2-8 at % of M1? (typically Si), up to 8 at % of Co, and the balance of Fe. A coverage of the main phase with the R?—(Fe,Co)—M1? phase is at least 50%, and the bi-granular grain boundary phase has a width of at least 50 nm.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: February 25, 2020
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Koichi Hirota, Masayuki Kamata, Takahiro Hashimoto, Hajime Nakamura
  • Patent number: 10563276
    Abstract: A high-performance NdFeB permanent magnet including a nitride phase and a production method thereof are provided. A main phase of the NdFeB permanent magnet has a structure of R2T14B; a grain boundary phase is distributed around the main phase and contains N, F, Zr, Ga and Cu; a composite phase containing R1, Tb and N exists between the main phase and the grain boundary phase and includes a phase having a structure of (R1, Tb)2T14(B, N). R represents at least two rare earth elements, and includes Pr and Nd; T represents Fe, Mn, Al and Co; R1 represents at least one rare earth element, and includes at least one of Dy and Tb; the main phase contains Pr, Nd, Fe, Mn, Al, Co and B; and the grain boundary phase further contains at least one of Nb and Ti. Through placing partially B by N, a magnetic performance is increased.
    Type: Grant
    Filed: December 18, 2016
    Date of Patent: February 18, 2020
    Assignee: SHENYANG GENERAL MAGNETIC CO., LTD
    Inventors: Baoyu Sun, Yongli Duan
  • Patent number: 10563295
    Abstract: A step is provided which performs a heat treatment at the sintering temperature of a sintered R-T-B based magnet or lower, while a powder of an RLM alloy (where RL is Nd and/or Pr; M is one or more selected from among Cu, Fe, Ga, Co and Ni) and a powder of an RH fluoride (where RH is Dy and/or Tb) are present on a surface of the sintered R-T-B based magnet. The RLM alloy contains RL in an amount of 50 at % or more, and a melting point of the RLM alloy is equal to or less than a temperature of the heat treatment. The heat treatment is performed while the RLM alloy powder and the RH fluoride powder are present on the surface of the sintered R-T-B based magnet at a mass ratio of RLM alloy:RH fluoride=96:4 to 5:5.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: February 18, 2020
    Assignee: HITACHI METALS, LTD.
    Inventor: Shuji Mino
  • Patent number: 10566117
    Abstract: An R-T-B based rare earth permanent magnet is expressed by a compositional formula: (R11?x(Y1?y?z Cey Laz)x)aTbBcMd in which R1 is one or more kinds of rare earth element not including Y, Ce and La, “T” is one or more kinds of transition metal, and includes Fe or Fe and Co as an essential component, “M” is an element having Ga or Ga and one or more kinds selected from Sn, Bi and Si, and 0.4?x?0.7, 0.00?y+z?0.20, 0.16?a/b?0.28, 0.050?c/b?0.075 and 0.005?d/b?0.028. The magnet includes a main phase, including a compound having a R2T14B type tetragonal structure, and a grain boundary phase. D10, D50, D90 of crystal grain diameter according to the main phase crystal grains satisfies the following formula: D50?4.00 ?m and (D90?D10)/D50?1.60. A coating rate of the grain boundary is 70.0% or more.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: February 18, 2020
    Assignee: TDK CORPORATION
    Inventors: Keiji Takeda, Shota Miyazaki
  • Patent number: 10559410
    Abstract: A grain-oriented electrical steel sheet subjected to magnetic domain refining by linearly introducing strains in a direction intersecting a rolling direction of the steel sheet repeatedly with intervals in the rolling direction, wherein if a repeating interval of the strains in the rolling direction is d (mm) and, when the steel sheet is placed on a flat surface, a mean value of difference between a height from the flat surface in linear strain-introduced areas of a steel sheet surface and a height from the flat surface in intermediate points between adjacent linear strain-introduced areas is h (mm), then the ratio h/d of the h to the d is 0.0025 or more and 0.015 or less.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: February 11, 2020
    Assignee: JFE STEEL CORPORATION
    Inventors: Seiji Okabe, Hirotaka Inoue, Shigehiro Takajo
  • Patent number: 10538825
    Abstract: A magnetic core and method for the manufacture of the magnetic core is presented. The method comprises winding an amorphous tape of a soft magnetic nanocrystallizable alloy possessing a first coefficient of thermal expansion onto a carrier of a material possessing a second coefficient of thermal expansion, wherein the second coefficient is larger than the first coefficient; a first thermal treatment of the wound tape together with the carrier, wherein the first thermal treatment creates a tension in the tape although the alloy remains in an x-ray amorphous state, removing the carrier from the wound tape after cooling of the wound tape together with the carrier; and a second thermal treatment of the wound tape without the carrier, wherein the second thermal treatment provides a nanocrystalline alloy structure, at least 50% of the alloy structure being fine crystalline particles having an average particle size of 100 nanometers or less.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: January 21, 2020
    Assignee: VACUUMSCHMELZE GMBH & CO. KG
    Inventor: Markus Brunner