Abstract: Modified or mutant bacterial luciferases having improved activity, as compared to wild type or unmodified bacterial luciferases, are described. The modified or mutant bacterial luciferases display increased light production and/or slower signal decay. Employing these modified or mutant bacterial luciferases improve a luminescence reporter system assay by increasing the detection sensitivity, resulting in improved bioreporter/reporter assays. The invention further provides methods for using the modified or mutant bacterial luciferases, reporter assays using the modified or mutant bacterial luciferases, and kits and articles of manufacture.
Abstract: This disclosure generally relates to the use of microorganisms to make various functionalized polyketides through polyketoacyl-CoA thiolase-catalyzed non-decarboxylative condensation reactions instead of decarboxylative reactions catalyzed by polyketide synthases. Native or engineered polyketoacyl-CoA thiolases catalyze the non-decarboxylative Claisen condensation in an iterative manner (i.e. multiple rounds) between two either unsubstituted or functionalized ketoacyl-CoAs (and polyketoacyl-CoAs) serving as the primers and acyl-CoAs serving as the extender unit to generate (and elongate) polyketoacyl-CoAs. Before the next round of polyketoacyl-CoA thiolase reaction, the ?-keto group of the polyketide chain of polyketoacyl-CoA can be reduced and modified step-wise by 3-OH-polyketoacyl-CoA dehydrogenase or polyketoenoyl-CoA hydratase or polyketoenoyl-CoA reductase. Dehydrogenase converts the ?-keto group to ?-hydroxy group. Hydratase converts the ?-hydroxy group to ?-?-double-bond.
Abstract: Disclosed are methods and reagents for the enzymatic measurement of short-chain fatty acids, having 3 to 6 carbon atoms, in a sample. Methods include the use of recombinant butyrate kinases from multiple species, combined various reagents that includes ATP, to detect butyric acid in different types of samples via measurement of ATP consumption. Disclosed also are the reagents themselves.
Type:
Grant
Filed:
April 2, 2021
Date of Patent:
October 3, 2023
Assignee:
SYSMEX CORPORATION
Inventors:
Shinichi Sakasegawa, Kenji Konishi, Yasushi Shirahase, Toshiyuki Yoshida
Abstract: Disclosed is a method for promoting extracellular expression of proteins in B. subtilis using cutinase, which belongs to the technical fields of genetic engineering, enzyme engineering and microbial engineering. It teaches co-expressing a cutinase mutant and a target protein in B. subtilis to promote extracellular expression of the target protein which is naturally located inside cells. The target protein includes xylose isomerase, 4,6-?-glucosyltransferase, 4-?-glucosyltransferase, trehalose synthase, branching enzyme and the like. The invention can achieve extracellular expression of intracellularly localized target protein, improve the production efficiency, reduce the production cost and simplify the subsequent extraction process.
Abstract: The present invention relates to polypeptides having carbonic anhydrase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
Type:
Grant
Filed:
January 20, 2021
Date of Patent:
October 3, 2023
Assignee:
Novozymes A/S
Inventors:
Sonja Salmon, Martin Simon Borchert, Thomas Holberg Blicher, Wolfgang Streit, Mirjam Perner
Abstract: Disclosed herein are albumin compositions having defined fatty acid profiles and methods of using the same. The albumin compositions described herein are suitable for use in cell culture methods, protein stabilization methods, amongst others. The albumin compositions described herein may improve the viability of and/or promote the growth of cells (e.g., mammalian cells) when the cells are cultured in a medium containing the albumin compositions. The albumin compositions described herein may improve the stability of a biologic when the biologic is in the presence of the albumin compositions. Further provided herein are methods of formulating albumin compositions having defined fatty acid profiles as described herein.
Abstract: The present invention provides for a genetically modified bacterial host cell capable of producing indigoidine, wherein the host cell comprises a non-ribosomal peptide synthetase (NRPS) that converts glutamine to indigoidine, and the bacterial host cell is reduced in its expression of one or more of the sixteen indicated enzymes.
Type:
Grant
Filed:
February 19, 2021
Date of Patent:
September 26, 2023
Assignee:
THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
Inventors:
Thomas T. Eng, Deepanwita Banerjee, Aindrila Mukhopadhyay
Abstract: The present invention provides for novel metabolic pathways to reduce or modulate glycerol production and increase product formation. More specifically, the invention provides for a recombinant microorganism comprising one or more native and/or heterologous proteins that function to import glycerol and one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to convert a carbohydrate source, such as lignocellulose, to a product, such as ethanol, wherein the one or more native and/or heterologous proteins or enzymes is activated, upregulated, or downregulated.
Abstract: The invention is directed to a method of preparing a long chain dicarboxylic acid producing strain by using directed evolution and homologous recombination, a strain obtained by this method that is capable of producing a long chain dicarboxylic acid under an acidic condition and the use of the strain. In particular, the invention is directed to a method of preparing a long chain dicarboxylic acid producing strain by using directed evolution of CYP52A12 gene and homologous recombination, a strain obtained by this method that is capable of producing a long chain dicarboxylic acid under an acidic condition and the use of the strain.
Type:
Grant
Filed:
July 12, 2021
Date of Patent:
September 12, 2023
Assignees:
CATHAY BIOTECH INC., CIBT AMERICA INC.
Inventors:
Wenbo Liu, Min Xu, Howard Chou, Xiucai Liu
Abstract: A method for producing a protein is provided. An objective protein is produced by culturing Talaromyces cellulolyticus having an objective protein-producing ability, which has been modified so that the activity of a YscB protein is reduced, in a culture medium.
Abstract: The present disclosure relates to a gene recombinant vector of a collagenase, comprising a collagenase gene, wherein an amino acid sequence of a collagenase encoded by the collagenase gene is shown in SEQ ID NO. 1; moreover, a genetically engineered strain of the collagenase and a preparation method of the collagenase are also disclosed; and the collagenase prepared according to the invention is capable of degrading a bone collagen, and improving a yield of a low-molecular-weight bone collagen peptide.
Type:
Grant
Filed:
September 14, 2022
Date of Patent:
August 29, 2023
Assignee:
INSTITUTE OF FOOD SCIENCE AND TECHNOLOGY, CHINESE ACADEMY OF AGRICULTURAL SCIENCES
Abstract: Polypeptides comprising maltose/maltotriose transporters are provided. Additionally, polynucleotides, DNA constructs, and vectors encoding a maltose/maltotriose transporter, or yeast cells harboring such polynucleotides are provided. The yeast cell may be a Saccharomyces eubayanus cell modified to increase the expression or transport activity of a maltose/maltotriose transporter at the plasma membrane of the cell. Further, methods are provided for making a fermentation product by culturing any one of the yeast cells described herein with a fermentable substrate. Finally, methods are provided to select for and isolate maltotriose-utilizing strains of Saccharomyces eubayanus.
Type:
Grant
Filed:
June 7, 2021
Date of Patent:
August 15, 2023
Assignee:
WISCONSIN ALUMNI RESEARCH FOUNDATION
Inventors:
Chris Todd Hittinger, EmilyClare Patricia Baker
Abstract: Provided is a method for improving the production amount of a tri- or higher galactooligosaccharide and the reaction rate by a method for producing a galactooligosaccharide characterized by allowing ?-galactosidase to react with a substrate in the presence of 5 to 60 mM sodium ions and 0.5 to 8 mM magnesium ions.
Abstract: Described herein are polymerase variants that are exonuclease deficient. Some variants retain the strand displacement capability comparable to the wild-type or parental polymerase. Some variants have a strand displacement capability that is improved relative to the wild-type or parental polymerase. The variants may have an extension rate that is greater than the wild-type or parental polymerase. The variants may have a waiting time that is less than the wild-type or parental polymerase.
Abstract: A recombinant filamentous fungi that includes reduced 2-Keto-3-Deoxy-Gluconate (KDG) aldolase enzyme activity as compared to the filamentous fungi not transformed to have reduced KDG aldolase enzyme activity is provided. Also provided is a method of producing KDG.
Type:
Grant
Filed:
May 14, 2019
Date of Patent:
July 25, 2023
Assignee:
BP Corporation North America Inc.
Inventors:
Molly Krebs, Chris Phillips, Fernando Valle
Abstract: Described herein are prenyltransferases including non-natural variants thereof having at least one amino acid substitution as compared to its corresponding natural or unmodified prenyltransferases and that are capable of at least two-fold greater rate of formation of cannabinoids such as cannabigerolic acid, cannabigerovarinic acid, cannabigerorcinic acid, and cannabigerol, as compared to a wild type control. Prenyltransferase variants also demonstrated regioselectivity to desired cannabinoid isomers such as CDBA (3-GOLA), 3-GDVA, 3-GOSA, and CBG (2-GOL). The prenyltransferase variants can be used to form prenylated aromatic compounds, and can be expressed in an engineered microbe having a pathway to such compounds, which include 3-GOLA, 3-GDVA, 3-GOSA, and CBG. 3-GOLA can be used for the preparation of cannabigerol (CBG), which can be used in therapeutic compositions.
Type:
Grant
Filed:
March 8, 2019
Date of Patent:
June 27, 2023
Assignee:
Genomatica, Inc.
Inventors:
Michael A. Noble, Kevin G. Hoff, Anna Lechner, Harish Nagarajan
Abstract: A technique of using a compositional innovation of a dry enzyme composition to improve the stability of a protein deamidase composition enables improvement of the stability of a dry protein deamidase composition by making both a protein deamidase and magnesium chloride coexist in a dry enzyme composition. The technique involves making adjustments so that the pH is at least 2 and less than 5 when the composition is dissolved in water at a concentration of 1 w/v %.
Abstract: The invention relates to cells which make rhamnolipids and are genetically modified such that they have a decreased activity, compared to the wild type thereof, of a glucose dehydrogenase and to a method for producing rhamnolipids using the cells according to the invention.
Type:
Grant
Filed:
October 18, 2017
Date of Patent:
June 27, 2023
Assignee:
Evonik Operations GmbH
Inventors:
Oliver Thum, Steffen Schaffer, Christoph Schorsch, Mirja Wessel