Patents by Inventor A J Lambert

A J Lambert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200006866
    Abstract: A method of forming a planar antenna on a first substrate. An antenna feedline is formed on a peelable copper film of a carrier. A dielectric with no internal conductive layer is formed on the feedline. A planar antenna is formed on one of two parallel sides of the dielectric and a feed port is formed adjacent the other parallel side. The feedline connects the antenna with the feed port. One plane of the planar antenna is configured for perpendicular attachment to a second substrate. The feedline is connected to the planar antenna by a via through the dielectric. The peelable copper is removed and the structure is etched to produce the planar antenna on the substrate. Two planar antennas on substrates can be perpendicularly attached to another substrate to form side-firing antennas.
    Type: Application
    Filed: June 28, 2018
    Publication date: January 2, 2020
    Inventors: Sri Chaitra Jyotsna Chavali, Sanka Ganesan, William J. Lambert, Debendra Mallik, Zhichao Zhang
  • Publication number: 20200006305
    Abstract: A semiconductor package includes a first die and a second die. The first die includes a first plurality of compound semiconductor transistors, and where the first die includes a first section of a Power Management Circuitry (PMC). The second die includes a second plurality of transistors that are arranged as a plurality of CMOS (Complementary metal-oxide-semiconductor) circuitries, and where the second die includes a second section of the PMC. The PMC includes a power converter that includes: a plurality of power switches, a plurality of driver circuitries to correspondingly control the plurality of power switches, and a controller to control the driver circuitries. The first section of the PMC in the first die includes the plurality of power switches, and the second section of the PMC in the second die includes at least a part of the controller.
    Type: Application
    Filed: June 28, 2018
    Publication date: January 2, 2020
    Applicant: Intel Corporation
    Inventors: William J. Lambert, Krishna Bharath, Beomseok Choi, Robert Sankman
  • Publication number: 20190377348
    Abstract: A control system provides steering control commands to a steering actuator of a steering device on a piece of towed marine equipment. A memory in the control system stores setpoint data including positional values for a desired position of the piece of towed marine equipment. A control module is configured to receive the setpoint data, receive process data representing a calculated actual position of the piece of towed marine equipment; and calculate a control command for the steering actuator of the steering device based upon the setpoint data and the process data. A disturbance adjustment calculation module is configured to combine a disturbance value based upon a measured disturbance with a value of the process data and output a disturbance adjustment value. A correction calculator module adds the disturbance adjustment value to the control command to create an adjusted control command for transmission to the steering actuator.
    Type: Application
    Filed: June 10, 2019
    Publication date: December 12, 2019
    Applicant: ION Geophysical Corporation
    Inventor: Dale J. Lambert
  • Publication number: 20190377392
    Abstract: Embodiments of the invention include a mmWave transceiver and methods of forming such devices. In an embodiment, the mmWave transceiver includes an RF module. The RF module may include a package substrate, a plurality of antennas formed on the package substrate, and a die attached to a surface of the package substrate. In an embodiment, the mmWave transceiver may also include a mainboard mounted to the RF module with one or more solder balls. In an embodiment, a thermal feature is embedded within the mainboard, and the thermal feature is separated from the die by a thermal interface material (TIM) layer. According to an embodiment, the thermal features are slugs and/or vias. In an embodiment, the die compresses the TIM layer resulting in a TIM layer with minimal thickness.
    Type: Application
    Filed: April 1, 2017
    Publication date: December 12, 2019
    Inventors: Divya MANI, William J. LAMBERT, Shawna LIFF, Sergio A. CHAN ARGUEDAS, Robert L. SANKMAN
  • Publication number: 20190378649
    Abstract: A hardened inductive device and systems and methods for protecting the inductive device from impact is provided. The inductive device is hardened with protective coating and/or an armor steel housing. The hardened inductive device is protected from impact by an object such as a bullet and leakage of dielectric fluid is prevented. Acoustic and vibration sensors are provided to detect the presence and impact, respectively, of an object in relation to the inductive device housing. The measurements of the acoustic and vibration sensors are compared to thresholds for sending alarms to the network control center and initiating shut-down and other sequences to protect the active part. The acoustic sensor results are utilized to determine the location of origin of the projectile.
    Type: Application
    Filed: August 19, 2019
    Publication date: December 12, 2019
    Inventors: George K. Frimpong, Alberto Prieto, Mirrasoul J. Mousavi, James Stoupis, Ed G. teNyenhuis, Jeremy R. Schueler, Andrew Bleich, Elizabeth D. Sullivan, Claude J. Lambert, Petter A. Fiskerud, Andrew J. Wall, Gary C. McLeish, Thomas McDonald, Ronald A. Kupiec
  • Patent number: 10503227
    Abstract: Described is an apparatus which comprises: a first voltage regulator (VR) coupled to first one or more inductors, the first VR is to provide power to a first power domain; and a second VR coupled to second one or more inductors at least one of which is inductively coupled to at least one of the first one or more inductors, the second VR is to provide power to a second power domain separate from the first power domain, wherein there is a non-zero phase angle offset between switching transistors of the first VR relative to the second VR.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: December 10, 2019
    Assignee: Intel Corporation
    Inventors: Krishna Bharath, Srikrishnan Venkataraman, William J. Lambert, Michael J. Hill, Alexander Slepoy, Dong Zhong, Kaladhar Radhakrishnan, Hector A. Aguirre Diaz, Jonathan P. Douglas
  • Patent number: 10473806
    Abstract: A seismic data collection system is disclosed. The system may include at least a first housing and a second housing. The first housing may be configured to detachably couple to the second housing. The system mays also include various components such as one or more seismic sensors, a clock, or memory. Each of the components may be arranged in one of the first housing or second housing.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: November 12, 2019
    Assignee: ION Geophysical Corporation
    Inventors: Dale J. Lambert, André W. Olivier
  • Publication number: 20190312908
    Abstract: A method of generating cyber chaff can include determining a cell of a grid of cells to which a first feature and a second feature of user data maps, identifying a cell type of the cell, the cell type indicating whether the cell is an active cell, an inactive cell, or a sub-process cell, and providing cyber chaff based on cyber chaff data associated with either (a) one or more cells of the inactive cell type or (b) one or more cells of the sub-process cell type.
    Type: Application
    Filed: April 9, 2019
    Publication date: October 10, 2019
    Inventors: Holger M. Jaenisch, James W. Handley, Michael J. Lambert, Brandon Woolley, William L. Cram, Ross MacKinnon, Mark A. Bradbury, Guy G. Swope
  • Patent number: 10431375
    Abstract: A hardened inductive device and systems and methods for protecting the inductive device from impact is provided. The inductive device is hardened with protective coating and/or an armor steel housing. The hardened inductive device is protected from impact by an object such as a bullet and leakage of dielectric fluid is prevented. Acoustic and vibration sensors are provided to detect the presence and impact, respectively, of an object in relation to the inductive device housing. The measurements of the acoustic and vibration sensors are compared to thresholds for sending alarms to the network control center and initiating shut-down and other sequences to protect the active part. The acoustic sensor results are utilized to determine the location of origin of the projectile.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: October 1, 2019
    Assignee: ABB Schweiz AG
    Inventors: George K. Frimpong, Alberto Prieto, Mirrasoul J. Mousavi, James Stoupis, Ed G teNyenhuis, Jeremy R. Schueler, Andrew Bleich, Elizabeth D. Sullivan, Claude J. Lambert, Petter A. Fiskerud, Andrew J. Wall, Gary C. McLeish, Thomas McDonald, Ronald A. Kupiec
  • Patent number: 10421775
    Abstract: A precision volumetric liquid dispensing instrument is disclosed that includes two pressure sensors and a fluid passageway with a defined volume portion in communication with the two sensors for receiving and distributing liquid in relatively small volumes. One of the pressure sensors is positioned to measure pressure at one portion of the defined volume portion of the fluid passageway and the other of the gas pressure sensors is positioned to measure gas pressure at a different portion of the defined volume portion of the passageway. At least one valve is in communication with the passageway for moving fluids into or out of the defined volume portion of the fluid passageway, and a processor carries out a step selected from the group consisting of (i) calculating the volume of the liquid based upon the measured pressure and (ii) metering a liquid into the defined volume portion of the fluid passageway until the measured pressure indicates that a desired volume of fluid is in the fluid passageway.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: September 24, 2019
    Assignee: CEM Corporation
    Inventors: David L. Herman, Joseph J. Lambert
  • Publication number: 20190279973
    Abstract: An apparatus comprises an inductor module including: a module substrate including a magnetic dielectric material: a plurality of inductive circuit elements arranged in the module substrate, wherein an inductive circuit element includes conductive traces arranged as a coil including a first coil end, a second coil end and a coil core, wherein the coil core includes the magnetic dielectric material; and a plurality of conductive contact pads electrically coupled to the first and second coil ends. The contact pads electrically coupled to the first coil ends are arranged on a first surface of the inductor module, and the contact pads electrically coupled to the second coil ends are arranged on a second surface of the inductor module.
    Type: Application
    Filed: May 30, 2019
    Publication date: September 12, 2019
    Inventors: Yongki Min, Reynaldo A. Olmedo, William J. Lambert, Kaladhar Radhakrishnan, Leigh E. Wojewoda, Venkat Anil K. Magadla, Clive R. Hendricks
  • Publication number: 20190257726
    Abstract: An energized dispersive extraction method for sample preparation for analysis is disclosed. The method includes the steps of placing an extraction solvent, sorbent particles, and a sample matrix containing an analyte in a heat conductive sample cup; positioning the sample cup in a pressure-resistant reaction chamber; dispersing the solvent and the sample matrix in the sample cup in the reaction chamber; heating the sample matrix and the solvent in the sample cup in the reaction chamber to a temperature that generates an above-atmospheric pressure; draining the solvent extract from the sample cup at atmospheric pressure; and collecting the solvent extract for analysis.
    Type: Application
    Filed: March 20, 2019
    Publication date: August 22, 2019
    Applicant: CEM Corporation
    Inventors: Michael J. Collins, SR., Joseph J. Lambert, Matthew N. Beard, Paul C. Elliott
  • Patent number: 10340260
    Abstract: An apparatus comprises an inductor module including: a module substrate including a magnetic dielectric material; a plurality of inductive circuit elements arranged in the module substrate, wherein an inductive circuit element includes conductive traces arranged as a coil including a first coil end, a second coil end and a coil core, wherein the coil core includes the magnetic dielectric material; and a plurality of conductive contact pads electrically coupled to the first and second coil ends. The contact pads electrically coupled to the first coil ends are arranged on a first surface of the inductor module, and the contact pads electrically coupled to the second coil ends are arranged on a second surface of the inductor module.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: July 2, 2019
    Assignee: Intel Corporation
    Inventors: Yongki Min, Reynaldo A. Olmedo, William J. Lambert, Kaladhar Radhakrishnan, Leigh E. Wojewoda, Venkat Anil K. Magadala, Clive R. Hendricks
  • Patent number: 10330573
    Abstract: An extraction method for preparing samples for analytical analysis is disclosed. The method includes the steps of placing a sample matrix containing one or more analytes in a heat conductive sample cup, positioning the heat conductive sample cup in a pressure-resistant reaction chamber, dispensing solvent into the heat conductive sample cup, dispersing the solvent and the sample matrix in the sample cup in the reaction chamber, heating the sample matrix and the extraction solvent in the heat conductive sample cup in the reaction chamber to a temperature at which the dispensed solvent generates an above-atmospheric pressure, and releasing the extraction solvent extract from the sample cup at atmospheric pressure.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: June 25, 2019
    Assignee: CEM Corporation
    Inventors: Michael J. Collins, Sr., Joseph J. Lambert, Matthew N. Beard, Paul C. Elliott
  • Patent number: 10295447
    Abstract: An energized dispersive extraction method for sample preparation for analysis is disclosed. The method includes the steps of placing an extraction solvent, sorbent particles, and a sample matrix containing an analyte in a heat conductive sample cup; positioning the sample cup in a pressure-resistant reaction chamber; dispersing the solvent and the sample matrix in the sample cup in the reaction chamber; heating the sample matrix and the solvent in the sample cup in the reaction chamber to a temperature that generates an above-atmospheric pressure; draining the solvent extract from the sample cup at atmospheric pressure; and collecting the solvent extract for analysis.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: May 21, 2019
    Assignee: CEM Corporation
    Inventors: Michael J. Collins, Sr., Joseph J. Lambert, Matthew N. Beard, Paul C. Elliott
  • Publication number: 20190132123
    Abstract: Systems and methods for confirming a cryptographic key. The system includes an electronic controller configured to generate an electronic message in response to an installation of a secret key on the electronic controller, the electronic message comprising information about the installation of the secret key, digitally sign the electronic message using a manufacturer private key, encrypt the electronic message, store the electronic message in a memory, access the stored electronic message in response to a request by a user, decrypt the electronic message, confirm a digital signature of the electronic message using a manufacturer public key, generate a confirmation message, and send the confirmation message to a user.
    Type: Application
    Filed: October 26, 2017
    Publication date: May 2, 2019
    Inventors: Robert J. Lambert, Robert M. Kaster
  • Patent number: 10241014
    Abstract: An instrument for extraction based molecular sample preparation and related processes is disclosed. The instrument includes a thermally conductive pressure resistant heating chamber and a thermally conductive sample cup positioned in the thermally conductive pressure resistant healing chamber for heating liquids and solids together in the thermally conductive sample cup. A liquid delivery inlet fixture in the thermally conductive pressure resistant heating chamber delivers liquids (solvent) from a supply to the thermally conductive sample cup in the thermally conductive pressure resistant heating chamber, and a chiller in liquid communication with the thermally conductive sample cup in the thermally conductive pressure resistant heating chamber receives heated liquids from the thermally conductive pressure resistant heating chamber when the chamber is opened to atmospheric pressure.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: March 26, 2019
    Assignee: CEM Corporation
    Inventors: Michael J. Collins, Sr., Joseph J. Lambert, Matthew N. Beard, Paul C. Elliott
  • Publication number: 20190051447
    Abstract: Devices and methods including a though-hole inductor for an electronic package are shown herein. Examples of the through-hole inductor include a substrate including at least one substrate layer. Each substrate layer including a dielectric layer having a first surface and a second surface. An aperture included in the dielectric layer is located from the first surface to the second surface. The aperture includes an aperture wall from the first surface to the second surface. A conductive layer is deposited on the first surface, second surface, and the aperture wall. At least one coil is cut from the conductive layer and located on the aperture wall.
    Type: Application
    Filed: October 17, 2018
    Publication date: February 14, 2019
    Inventors: William J. Lambert, Mihir K. Roy, Mathew J. Manusharow, Yikang Deng
  • Publication number: 20190011339
    Abstract: An energized dispersive extraction method for sample preparation for analysis is disclosed. The method includes the steps of placing an extraction solvent, sorbent particles, and a sample matrix containing an analyte in a heat conductive sample cup; positioning the sample cup in a pressure-resistant reaction chamber; dispersing the solvent and the sample matrix in the sample cup in the reaction chamber; heating the sample matrix and the solvent in the sample cup in the reaction chamber to a temperature that generates an above-atmospheric pressure; draining the solvent extract from the sample cup at atmospheric pressure; and collecting the solvent extract for analysis.
    Type: Application
    Filed: July 10, 2017
    Publication date: January 10, 2019
    Applicant: CEM Corporation
    Inventors: Michael J. Collins, SR., Joseph J. Lambert, Matthew N. Beard, Paul C. Elliott
  • Publication number: 20190011338
    Abstract: An instrument for extraction based molecular sample preparation and related processes is disclosed. The instrument includes a thermally conductive pressure resistant heating chamber and a thermally conductive sample cup positioned in the thermally conductive pressure resistant heating chamber for heating liquids and solids together in the thermally conductive sample cup. A liquid delivery inlet fixture in the thermally conductive pressure resistant heating chamber delivers liquids (solvent) from a supply to the thermally conductive sample cup in the thermally conductive pressure resistant heating chamber, and a chiller in liquid communication with the thermally conductive sample cup in the thermally conductive pressure resistant heating chamber receives heated liquids from the thermally conductive pressure resistant heating chamber when the chamber is opened to atmospheric pressure.
    Type: Application
    Filed: July 10, 2017
    Publication date: January 10, 2019
    Applicant: CEM Corporation
    Inventors: Michael J. Collins, SR., Joseph J. Lambert, Matthew N. Beard, Paul C. Elliott