Patents by Inventor Abhishek A. Sharma

Abhishek A. Sharma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230132936
    Abstract: Systems, methods and instrumentalities are described herein for automating a medical environment. The automation may be realized using one or more sensing devices and at least one processing device. The sensing devices may be configured to capture images of the medical environment and provide the images to the processing device. The processing device may determine characteristics of the medical environment based on the images and automate one or more aspects of the operations in the medical environment. These characteristics may include, e.g., people and/or objects present in the images and respective locations of the people and/or objects in the medical environment. The operations that may be automated may include, e.g., maneuvering and/or positioning a medical device based on the location of a patient, determining and/or adjusting the parameters of a medical device, managing a workflow, providing instructions and/or alerts to a patient or a physician, etc.
    Type: Application
    Filed: January 1, 2023
    Publication date: May 4, 2023
    Applicant: SHANGHAI UNITED IMAGING INTELLIGENCE CO., LTD.
    Inventors: Ziyan Wu, Srikrishna Karanam, Meng Zheng, Abhishek Sharma, Ren Li
  • Patent number: 11640995
    Abstract: Ferroelectric field effect transistors (FeFETs) having band-engineered interface layers are described. In an example, an integrated circuit structure includes a semiconductor channel layer above a substrate. A metal oxide material is on the semiconductor channel layer, the metal oxide material having no net dipole. A ferroelectric oxide material is on the metal oxide material. A gate electrode is on the ferroelectric oxide material, the gate electrode having a first side and a second side opposite the first side. A first source/drain region is at the first side of the gate electrode, and a second source/drain region is at the second side of the gate electrode.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: May 2, 2023
    Assignee: Intel Corporation
    Inventors: Prashant Majhi, Brian S. Doyle, Kevin P. O'Brien, Abhishek A. Sharma, Elijah V. Karpov, Kaan Oguz
  • Patent number: 11640839
    Abstract: A 1S-1T ferroelectric memory cell is provided that include a transistor and a two-terminal selector device. The transistor exhibits a low conductive state and a high conductive state (channel resistance), depending on drive voltage. The two-terminal selector device exhibits one of an ON-state and an OFF-state depending upon whether the transistor is in its low conductive state or its high conductive state. The transistor may be, for instance, a ferroelectric gate vertical transistor. Modulation of a polarization state of ferroelectric material of the vertical transistor may be utilized to switch the state of the selector device. The memory cell may thus selectively be operated in one of an ON-state and an OFF-state depending upon whether the selector device is in its ON-state or OFF-state.
    Type: Grant
    Filed: January 6, 2022
    Date of Patent: May 2, 2023
    Assignee: Intel Corporation
    Inventors: Abhishek A. Sharma, Brian S. Doyle, Ravi Pillarisetty, Prashant Majhi, Elijah V. Karpov
  • Publication number: 20230128166
    Abstract: Embodiments of the present disclosure relate to methods of fabricating IC devices with IC structures with improved bonding between a semiconductor layer and a non-semiconductor support structure, as well as resulting IC devices, assemblies, and systems. An example method includes providing a semiconductor material over a semiconductor support structure and, subsequently, depositing a first bonding material on the semiconductor material. The method further includes depositing a second bonding material on a non-semiconductor support structure such as glass or mica wafers, followed by bonding the face of the semiconductor material with the first bonding material to the face of the non-semiconductor support structure with the second bonding material. Using first and second bonding materials that include silicon, nitrogen, and oxygen (e.g.
    Type: Application
    Filed: October 26, 2021
    Publication date: April 27, 2023
    Applicant: Intel Corporation
    Inventors: Wilfred Gomes, Abhishek A. Sharma
  • Patent number: 11637185
    Abstract: Embodiments herein describe techniques for an integrated circuit that includes a substrate, a semiconductor device on the substrate, and a contact stack above the substrate and coupled to the semiconductor device. The contact stack includes a contact metal layer, and a semiconducting oxide layer adjacent to the contact metal layer. The semiconducting oxide layer includes a semiconducting oxide material, while the contact metal layer includes a metal with a sufficient Schottky-barrier height to induce an interfacial electric field between the semiconducting oxide layer and the contact metal layer to reject interstitial hydrogen from entering the semiconductor device through the contact stack. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: April 25, 2023
    Assignee: Intel Corporation
    Inventors: Justin Weber, Harold Kennel, Abhishek Sharma, Christopher Jezewski, Matthew V. Metz, Tahir Ghani, Jack T. Kavalieros, Benjamin Chu-Kung, Van H. Le, Arnab Sen Gupta
  • Patent number: 11631717
    Abstract: A memory cell is disclosed. The memory cell includes a storage component that includes a chalcogenide stack that includes a plurality of layers of material and a selector component that includes a Schottky diode.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: April 18, 2023
    Assignee: Intel Corporation
    Inventors: Charles Kuo, Prashant Majhi, Abhishek Sharma, Willy Rachmady
  • Publication number: 20230104304
    Abstract: A method includes processing event data to detect a status of a network function. The event data is processed based on two or more conditions defined by a correlation policy. The correlation policy includes a non-deterministic finite automata tree (NFAT) structure correlation policy having a policy type and a logic-gate. The method additionally includes determining the policy type of the NFAT structure correlation policy. The method also includes determining whether a first value of the two or more conditions is indicative of whether a first condition is satisfied. The method further includes determining whether a second value of the two or more conditions is indicative of whether the second condition is satisfied. The method additionally includes determining whether the NFAT structure correlation policy is satisfied based on the first value, the second value, the logic-gate and the policy type.
    Type: Application
    Filed: October 27, 2021
    Publication date: April 6, 2023
    Inventors: Mihirraj Narendra DIXIT, Surender Singh LAMBA, Abhishek SHARMA
  • Publication number: 20230102219
    Abstract: Described herein are integrated circuit devices with metal-oxide semiconductor channels and carbon source and drain (S/D) contacts. S/D contacts conduct current to and from the semiconductor devices, e.g., to the source and drain regions of a transistor. Carbon S/D contacts may be particularly useful with semiconductor devices that use certain channel materials, such as indium gallium zinc oxide.
    Type: Application
    Filed: September 17, 2021
    Publication date: March 30, 2023
    Applicant: Intel Corporation
    Inventors: Arnab Sen Gupta, Matthew V. Metz, Hui Jae Yoo, Justin R. Weber, Van H. Le, Jason C. Retasket, Abhishek A. Sharma, Noriyuki Sato, Yu-Jin Chen, Eric Mattson, Edward O. Johnson, JR.
  • Publication number: 20230099598
    Abstract: A computer includes a processor and a memory storing instructions executable by the processor to receive sensor data indicating a current position of an object, determine a predicted position of the object at a future time, and instruct a component of a vehicle to actuate based on the current position being in a first zone of a plurality of zones surrounding the vehicle and the predicted position being in a second zone of the plurality of zones different than the first zone. The zones are nonoverlapping and have preset boundaries relative to the vehicle.
    Type: Application
    Filed: September 27, 2021
    Publication date: March 30, 2023
    Applicant: Ford Global Technologies, LLC
    Inventors: Aakar Mehra, David Dekime, Kenneth Harkenrider, Abhishek Sharma, Douglas Blue
  • Patent number: 11616057
    Abstract: IC device including back-end-of-line (BEOL) transistors with crystalline channel material. A BEOL crystalline seed may be formed over a dielectric layer that has been planarized over a front-end-of-line (FEOL) transistor level that employs a monocrystalline substrate semiconductor. The BEOL crystalline seed may be epitaxial to the substrate semiconductor, or may have crystallinity independent of that of the substrate semiconductor. The BEOL crystalline seed may comprise a first material having a higher melt temperature than a melt material formed over the seed and over the dielectric layer. Through rapid melt growth, the melt material may be heated to a temperature sufficient to transition from an as-deposited state to a more crystalline state that is derived from, and therefore associated with, the BEOL crystalline seed. A BEOL transistor may then be fabricated from the crystallized material.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: March 28, 2023
    Assignee: Intel Corporation
    Inventors: Prashant Majhi, Abhishek Sharma, Brian Doyle, Ravi Pillarisetty, Willy Rachmady
  • Patent number: 11616839
    Abstract: An edge computing platform with machine learning capability is provided between a local network with a plurality of sensors and a remote network. A machine learning model is created and trained in the remote network using aggregated sensor data and deployed to the edge platform. Before being deployed, the model is edge-converted (“edge-ified”) to run optimally with the constrained resources of the edge device and with the same or better level of accuracy. The “edge-ified” model is adapted to operate on continuous streams of sensor data in real-time and produce inferences. The inferences can be used to determine actions to take in the local network without communication to the remote network. A closed-loop arrangement between the edge platform and remote network provides for periodically evaluating and iteratively updating the edge-based model.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: March 28, 2023
    Assignee: JOHNSON CONTROLS TYCO IP HOLDINGS LLP
    Inventors: Abhishek Sharma, Sastry K M Malladi
  • Publication number: 20230093064
    Abstract: Integrated circuit (IC) devices implementing pairs of thin-film transistors (TFTs) with shared contacts, and associated systems and methods, are disclosed. An example IC device may include a support structure, a channel layer provided over the support structure, where the channel layer includes a thin-film semiconductor material, a first TFT with a channel region that includes a first portion of the channel layer, and a second TFT with a channel region that includes a second portion of the channel layer. In some embodiments, a source or a drain (S/D) contact of the first TFT may be a shared contact that is also a S/D contact of the second TFT. In other embodiments, a gate contact/stack of the first TFT may be a shared contact/stack that is also a gate contact/stack of the second TFT.
    Type: Application
    Filed: September 17, 2021
    Publication date: March 23, 2023
    Inventors: Abhishek A. Sharma, Noriyuki Sato, Van H. Le, Sarah Atanasov, Hui Jae Yoo
  • Publication number: 20230092244
    Abstract: Described herein are back-gated transistors with fin-shaped gates, and IC devices including such transistors. The transistor includes a gate electrode formed over a support structure, where the gate electrode includes a metal fin that extends perpendicular to the support structure. A gate dielectric formed of a metal oxide film is deposited over the gate electrode and conforming to the fin shape, and a channel material formed of a high mobility oxide semiconductor film is deposited over the gate dielectric, the channel material also conforming to the fin shape. Source and drain contacts may be arranged so that the fin creates a channel with a larger channel width or a longer channel length.
    Type: Application
    Filed: September 22, 2021
    Publication date: March 23, 2023
    Inventors: Noriyuki Sato, Hui Jae Yoo, Van H. Le, Sarah Atanasov, Abhishek A. Sharma
  • Publication number: 20230086302
    Abstract: A method that includes receiving an input at an interactive conversation service that uses an intent classification model. The method may further include generating, using an encoder model of the intent classification model, a set of output vectors corresponding to the input, where the encoder model is configured to determine a set of metrics corresponding to intent classifications. The method may further include determining, using an outlier detection model of the intent classification model, whether the input is in-domain or out-of-domain (OOD) based on a first vector of the set of output vectors satisfying a domain threshold relative to one or more of the intent classifications. The method may further include outputting, by the intent classification model, a second vector of the set of output vectors that indicates the set of metrics corresponding to the intent classifications or an indication that the input is OOD.
    Type: Application
    Filed: September 20, 2021
    Publication date: March 23, 2023
    Inventors: Shilpa Bhagavath, Shubham Mehrotra, Abhishek Sharma, Shashank Harinath, Na Cheng, Zineb Laraki
  • Publication number: 20230086977
    Abstract: Described herein are integrated circuit (IC) devices that include devices that include fin-based field-effect transistors (FinFETs) integrated over gate-all-around (GAA) transistors. The GAA transistors may serve to provide high-performance compute logic, and may be relatively low-voltage transistors, while FinFETs may be more suitable than GAA transistors for providing high-voltage transistors, and, therefore, may serve to provide peripheral logic for backend memory arrays implemented over the same support structure over which the GAA transistors and the FinFETs are provided. Such an arrangement may address the fundamental voltage incompatibility by integrating a mix of FinFETs and GAA transistors in stacked complimentary FET (CFET) architecture to enable embedded 1T-1X based memories.
    Type: Application
    Filed: September 17, 2021
    Publication date: March 23, 2023
    Applicant: Intel Corporation
    Inventors: Prashant Majhi, Brian S. Doyle, Van H. Le, Abhishek A. Sharma
  • Patent number: 11610894
    Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate, a first inter-level dielectric (ILD) layer above the substrate, and a second ILD layer above the first ILD layer. A first capacitor and a second capacitor are formed within the first ILD layer and the second ILD layer. A first top plate of the first capacitor and a second top plate of the second capacitor are formed at a boundary between the first ILD layer and the second ILD layer. The first capacitor and the second capacitor are separated by a dielectric area in the first ILD layer. The dielectric area includes a first dielectric area that is coplanar with the first top plate or the second top plate, and a second dielectric area above the first dielectric area and to separate the first top plate and the second top plate. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: March 21, 2023
    Assignee: Intel Corporation
    Inventors: Travis W. Lajoie, Abhishek A. Sharma, Van H. Le, Chieh-Jen Ku, Pei-Hua Wang, Jack T. Kavalieros, Bernhard Sell, Tahir Ghani, Gregory George, Akash Garg, Julie Rollins, Allen B. Gardiner, Shem Ogadhoh, Juan G. Alzate Vinasco, Umut Arslan, Fatih Hamzaoglu, Nikhil Mehta, Yu-Wen Huang, Shu Zhou
  • Publication number: 20230081882
    Abstract: A memory structure includes a spacer between a first side of a wordline conductor and a bitline conductor. A semiconductor material has horizontal portions extending from the bitline conductor along a top and bottom of the wordline conductor and has a contact portion extending along a second side of the wordline conductor between and connecting the horizontal portions. A high-? dielectric is between the semiconductor material and the wordline conductor. A capacitor has a first conductor, a second conductor, and an insulator between the first and second conductors, where the first conductor contacts the contact portion of the semiconductor material along the first side of the wordline conductor, and the second conductor connects to a ground terminal.
    Type: Application
    Filed: September 14, 2021
    Publication date: March 16, 2023
    Applicant: Intel Corporation
    Inventors: Sean T. Ma, Abhishek A. Sharma, Aaron D. Lilak, Hui Jae Yoo, Scott B. Clendenning, Van H. Le, Tristan A. Tronic, Urusa Alaan
  • Publication number: 20230084611
    Abstract: Described herein are memory cells that include two transistors stacked above one another above a support structure where neither one of the transistors is coupled to a capacitor and where at least one of the two transistors is a thin-film transistor. In such 2T capacitorless memory cells, a first transistor may be referred to a write transistor, and a second transistor may be a read transistor. The first transistor may be a three-terminal device having two S/D terminals and a gate terminal, while the second transistor may be a four-terminal device having two S/D terminals and two gate terminals.
    Type: Application
    Filed: September 10, 2021
    Publication date: March 16, 2023
    Applicant: INTEL CORPORATION
    Inventors: Noriyuki Sato, Abhishek A. Sharma, Van H. Le, Hui Jae Yoo
  • Patent number: 11604984
    Abstract: A system comprising a first computing apparatus in communication with multiple second computing apparatuses. The first computing apparatus may obtain a plurality of first trained machine learning models for a task from the multiple second computing apparatuses. At least a portion of parameter values of the plurality of first trained machine learning models may be different from each other. The first computing apparatus may also obtain a plurality of training samples. The first computing apparatus may further determine, based on the plurality of training samples, a second trained machine learning model by learning from the plurality of first trained machine learning models.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: March 14, 2023
    Assignee: SHANGHAI UNITED IMAGING INTELLIGENCE CO., LTD.
    Inventors: Abhishek Sharma, Arun Innanje, Ziyan Wu, Shanhui Sun, Terrence Chen
  • Patent number: 11605671
    Abstract: Embedded non-volatile memory structures having double selector elements are described. In an example, a memory device includes a word line. A double selector element is above the word line. The double selector element includes a first selector material layer, a second selector material layer different than the first selector material layer, and a conductive layer directly between the first selector material layer and the second selector material layer. A bipolar memory element is above the word line. A conductive electrode is between the double selector element and the bipolar memory element. A bit line is above the word line.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: March 14, 2023
    Assignee: Intel Corporation
    Inventors: Prashant Majhi, Ravi Pillarisetty, Elijah V. Karpov, Brian S. Doyle, Abhishek A. Sharma