Patents by Inventor Abhishek Anil Sharma

Abhishek Anil Sharma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230422485
    Abstract: Structures having memory with backside DRAM and power delivery are described. In an example, an integrated circuit structure includes a front-side structure including a device layer having a plurality of nanowire-based transistors, and a plurality of metallization layers above the nanowire-based transistors of the device layer. A backside structure is below the nanowire-based transistors of the device layer. The backside structure includes a plurality of dynamic random access memory (DRAM) devices.
    Type: Application
    Filed: June 28, 2022
    Publication date: December 28, 2023
    Inventors: Abhishek Anil SHARMA, Sagar SUTHRAM, Wilfred GOMES, Tahir GHANI, Rishabh MEHANDRU, Cory WEBER, Anand S. MURTHY
  • Patent number: 11830788
    Abstract: An example relates to an integrated circuit including a semiconductor substrate, and a wiring layer stack located on the semiconductor substrate. The integrated circuit further includes a transistor embedded in the wiring layer stack. The transistor includes an embedded layer. The embedded layer has a thickness of less than 10 nm. The embedded layer includes at least one two-dimensional crystalline layer including more than 10% metal atoms. Further examples relate to methods for forming integrated circuits.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: November 28, 2023
    Assignee: Intel Corporation
    Inventors: Carl Naylor, Ashish Agrawal, Urusa Alaan, Christopher Jezewski, Mauro Kobrinsky, Kevin Lin, Abhishek Anil Sharma
  • Publication number: 20230369508
    Abstract: Techniques for forming thin film transistors (TFTs) having multilayer and/or concentration gradient semiconductor regions. An example integrated circuit includes a gate electrode, a gate dielectric on the gate electrode, and a semiconductor region on the gate dielectric. In some cases, the semiconductor region includes a plurality of compositionally different material layers, at least two layers of the different material layers each being a semiconductor layer. In some other cases, the semiconductor region includes a single layer having a material concentration gradient extending from a bottom surface of the single layer (adjacent to the gate dielectric) to a top surface of the single layer. The integrated circuit further includes first and second conductive contacts that each contact a respective portion of the semiconductor region.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 16, 2023
    Applicant: Intel Corporation
    Inventors: Timothy Jen, Prem Chanani, Cheng Tan, Brian Wadsworth, Andre Baran, James Pellegren, Christopher J. Wiegand, Van H. Le, Abhishek Anil Sharma, Shailesh Kumar Madisetti, Xiaojun Weng
  • Publication number: 20230369506
    Abstract: Techniques are provided herein for forming thin film transistor structures having a laterally recessed gate electrode. The gate electrode may be recessed such that it does not extend under one or both conductive contacts of the transistor. Recessing the lateral dimensions of the gate electrode can reduce gate leakage current and parasitic capacitance. According to an example, a given memory structure generally includes memory cells, with each memory cell having an access device and a storage device. According to some such embodiments, the memory cells are arranged in a two-dimensional array within one or more interconnect layers and stacked in a vertical direction such that multiple tiers of memory cell arrays are formed within the interconnect region. Any of the given TFT structures may include a gate electrode that is laterally recessed such that one or more of the contacts are not directly over the gate electrode.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 16, 2023
    Applicant: Intel Corporation
    Inventors: Abhishek Anil Sharma, Miriam R. Reshotko, Van H. Le, Travis W. Lajoie, Mark Armstrong, Cheng Tan, Timothy Jen, Moshe Dolejsi, Deepyanti Taneja
  • Publication number: 20230369501
    Abstract: Techniques are provided herein for forming transistor devices with reduced parasitic capacitance, such as transistors used in a memory structure. In an example, a given memory structure includes memory cells, with a given memory cell having an access device and a storage device. The access device may include, for example, a thin film transistor (TFT), and the storage device may include a capacitor. Any of the given TFTs may include a dielectric liner extending along sidewalls of the TFT. The TFT includes a recess (e.g., a dimple) that extends laterally inwards toward a midpoint of a semiconductor region of the TFT. The dielectric liner thus also pinches or otherwise extends inward. This pinched-in dielectric liner may reduce parasitic capacitance between the contacts of the TFT and the gate electrode of the TFT. The pinched-in dielectric liner may also protect the contacts from forming too deep into the semiconductor region.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 16, 2023
    Applicant: Intel Corporation
    Inventors: Cheng Tan, Yu-Wen Huang, Hui-Min Chuang, Xiaojun Weng, Nikhil J. Mehta, Allen B. Gardiner, Shu Zhou, Timothy Jen, Abhishek Anil Sharma, Van H. Le, Travis W. Lajoie, Bernhard Sell
  • Publication number: 20230369444
    Abstract: Techniques are provided herein for forming thin film transistor structures having a multilayer and/or concentration gradient gate dielectric. Such a gate dielectric can be used, to tune the performance and/or reliability of the transistor. According to some such embodiments, memory structures having thin film transistor (TFT) structures are arranged in a two-dimensional array within one or more interconnect layers and stacked in a vertical direction such that multiple tiers of memory structure arrays are formed within the interconnect region. Any of the given TFT structures may include a multilayer and/or graded gate dielectric that includes at least two or more different dielectric layers and/or a material concentration gradient through a thickness of the gate dielectric.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 16, 2023
    Applicant: Intel Corporation
    Inventors: Abhishek Anil Sharma, Albert B. Chen, Mark Armstrong, Afrin Sultana, Van H. Le, Travis W. Lajoie, Shailesh Kumar Madisetti, Timothy Jen, Cheng Tan, Moshe Dolejsi, Vishak Venkatraman, Christopher Ryder, Deepyanti Taneja
  • Publication number: 20230369340
    Abstract: Techniques are provided herein for forming thin film transistor structures having co-doped semiconductor regions. The addition of insulating dopants can be used to improve the performance, stability, and reliability of the TFT. A given TFT structure within an array of similar TFT structures formed in an interconnect region may include a semiconductor region that is co-doped with one or more additional elements. The doping profile can be tuned to optimize performance, stability, and reliability of the TFT structure. In some embodiments, the doping profile causes an overall reduction in the conductivity of the semiconductor region, leading to a higher threshold voltage. Designing access devices (in, for example, a DRAM architecture) with higher threshold voltages can be beneficial for improving reliability of the memory cell.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 16, 2023
    Applicant: Intel Corporation
    Inventors: Van H. Le, Timothy Jen, Vishak Venkatraman, Shailesh Kumar Madisetti, Cheng Tan, Harish Ganapathy, James Pellegren, Kamal H. Baloch, Abhishek Anil Sharma
  • Publication number: 20230369426
    Abstract: Techniques for forming thin film transistors (TFTs) having multilayer contact structures. An example integrated circuit includes a gate electrode, a gate dielectric on the gate electrode, a semiconductor region on the gate dielectric, and a conductive contact that contacts at least a portion of the semiconductor region. In some other cases, the conductive contact comprises a multilayer structure having at least a first material layer on the at least a portion of the semiconductor region, at least a second material layer on the first material layer, and a conductive fill material over the first and second material layers. In some other cases, the conductive contact comprises a multilayer structure having (1) a graded material layer on the at least a portion of the semiconductor region and (2) a conductive fill material over the graded material layer, wherein the graded material layer comprises a concentration gradient of a given element.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 16, 2023
    Applicant: Intel Corporation
    Inventors: Abhishek Anil Sharma, Travis W. Lajoie, Van H. Le, Timothy Jen, Kamal H. Baloch, Mark Armstrong, Albert B. Chen, Moshe Dolejsi, Shailesh Kumar Madisetti, Afrin Sultana, Deepyanti Taneja, Vishak Venkatraman
  • Publication number: 20230369503
    Abstract: Techniques are provided for making asymmetric contacts to improve the performance of thin film transistors (TFT) structures. The asymmetry may be with respect to the area of contact interface with the semiconductor region and/or the depth to which the contacts extend into the semiconductor region. According to some embodiments, the TFT structures are used in memory structures arranged in a two-dimensional array within one or more interconnect layers and stacked in a vertical direction such that multiple tiers of memory structure arrays are formed within the interconnect region. Any of the given TFT structures may include asymmetric contacts, such as two contacts that each have a different contact area to a semiconductor region, and/or that extend to different depths within the semiconductor region. The degree of asymmetry may be tuned during fabrication to modulate certain transistor parameters such as, for example, leakage, capacitance, gate control, channel length, or contact resistance.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 16, 2023
    Applicant: Intel Corporation
    Inventors: Cheng Tan, Van H. Le, Akash Garg, Shokir A. Pardaev, Timothy Jen, Abhishek Anil Sharma, Thiruselvam Ponnusamy, Moira C. Vyner, Caleb Barrett, Forough Mahmoudabadi, Albert B. Chen, Travis W. Lajoie, Christopher M. Pelto
  • Publication number: 20230371233
    Abstract: Techniques are provided herein for forming multi-tier memory structures with graded characteristics across different tiers. A given memory structure includes memory cells, with a given memory cell having an access device and a storage device. The access device may include, for example, a thin film transistor (TFT) structure, and the storage device may include a capacitor. Certain geometric or material parameters of the memory structures can be altered in a graded fashion across any number of tiers to compensate for process effects that occur when fabricating a given tier, which also affect any lower tiers. This may be done to more closely match the performance of the memory arrays across each of the tiers.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 16, 2023
    Applicant: Intel Corporation
    Inventors: Abhishek Anil Sharma, Travis W. Lajoie, Forough Mahmoudabadi, Shailesh Kumar Madisetti, Van H. Le, Timothy Jen, Cheng Tan, Jisoo Kim, Miriam R. Reshotko, Vishak Venkatraman, Eva Vo, Yue Zhong, Yu-Che Chiu, Moshe Dolejsi, Lorenzo Ferrari, Akash Kannegulla, Deepyanti Taneja, Mark Armstrong, Kamal H. Baloch, Afrin Sultana, Albert B. Chen, Vamsi Evani, Yang Yang, Juan G. Alzate-Vinasco, Fatih Hamzaoglu
  • Publication number: 20230369509
    Abstract: Techniques are provided herein for forming thin film transistor (TFT) structures having one or more doped contact regions. The addition of certain dopants can be used to increase conductivity and provide higher thermal stability in the contact regions of the TFT. Memory structures having TFT structures are arranged in a two-dimensional array within one or more interconnect layers and stacked in a vertical direction such that multiple tiers of memory structure arrays are formed within the interconnect region. Any of the TFT structures within the memory structures may include one or more contacts that are doped with additional elements. The doping profile of the contacts can be tuned to optimize performance, stability, and reliability of the TFT structure. Furthermore, additional doping may be performed within the area beneath the contacts and extending into the semiconductor region.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 16, 2023
    Applicant: Intel Corporation
    Inventors: Jisoo Kim, Xiaoye Qin, Timothy Jen, Harish Ganapathy, Van H. Le, Huiying Liu, Prem Chanani, Cheng Tan, Shailesh Kumar Madisetti, Abhishek Anil Sharma, Brian Wadsworth, Vishak Venkatraman, Andre Baran
  • Publication number: 20230317553
    Abstract: Thermoelectric (TE) devices and their manufacture on integrated circuit (IC) dies to improve thermal performance. An IC die may include a substrate with transistors on one side, a heat spreader on a second side, and a TE device between them. The TE device may have TE elements with similar dimensions as transistor features. An IC die with transistor circuitry blocks in multiple areas of an IC die may include TE devices between each of the transistor circuitry blocks and a heat spreader.
    Type: Application
    Filed: April 1, 2022
    Publication date: October 5, 2023
    Applicant: Intel Corporation
    Inventors: Abhishek Anil Sharma, Wilfred Gomes
  • Publication number: 20230315920
    Abstract: Method and apparatus to implement an integrated circuit (IC) device to perform homomorphic computing. In one embodiment, the IC device includes a memory array containing a plurality of memory cells to store data and compute circuitry to perform computations on encrypted data stored in the memory array. The memory array and the compute circuitry are integrated in a same die but at different die depth. At least a portion of the memory array overlaps a portion of the compute circuitry in a same x-y plane.
    Type: Application
    Filed: April 2, 2022
    Publication date: October 5, 2023
    Inventors: Abhishek Anil Sharma, Wilfred Gomes, Pushkar Ranade
  • Publication number: 20230317517
    Abstract: Integrated circuit interconnect structures including an interconnect metallization feature comprising a sidewall reacted with a chalcogen into a low resistance liner. A portion of a backbone material or a metal seed layer may be advantageously converted into a metal chalcogenide, which can lower scattering resistance of an interconnect feature relative to alternative diffusion barrier materials, such a tantalum. Scattering resistance of such metal chalcogenide liner materials may be further reduced by actively cooling an IC, for example to cryogenic temperatures.
    Type: Application
    Filed: April 1, 2022
    Publication date: October 5, 2023
    Applicant: Intel Corporation
    Inventors: Abhishek Anil Sharma, Wilfred Gomes, Pushkar Ranade
  • Publication number: 20230317851
    Abstract: Integrated circuit (IC) including transistors with high-mobility/high-saturation velocity, non-silicon channel materials coupled to a silicon substrate through counter-doped sub-channel materials, which greatly reduce electrical leakage currents through the substrate when the IC is operated at very low temperatures (e.g., below ?25 C). With low temperature operation, high transistor performance associated with the non-silicon channel materials can be integrated into high density IC architectures that avoid the limitations associated with semiconductor material layer transfers.
    Type: Application
    Filed: April 1, 2022
    Publication date: October 5, 2023
    Applicant: Intel Corporation
    Inventors: Abhishek Anil Sharma, Wilfred Gomes, Pushkar Ranade, Willy Rachmady, Ravi Pillarisetty
  • Publication number: 20230317140
    Abstract: In one embodiment, a memory comprises: a first subarray having a first plurality of memory cells, the first subarray having a first orientation; and a second subarray having a second plurality of memory cells, the second subarray having a second orientation, the second orientation orthogonal to the first orientation. Other embodiments are described and claimed.
    Type: Application
    Filed: March 30, 2022
    Publication date: October 5, 2023
    Inventors: Abhishek Anil Sharma, Sagar Suthram, Rajabali Koduri, Pushkar Ranade, Wilfred Gomes
  • Publication number: 20230315334
    Abstract: In one embodiment, an integrated circuit package includes: a first die having a plurality of cores, each of the plurality of cores having a local memory interface circuit to access a local portion of a dynamic random access memory (DRAM); and a second die comprising the DRAM, where at least some of the plurality of cores are directly coupled to a corresponding local portion of the DRAM by a stacking of the first die and the second die. Other embodiments are described and claimed.
    Type: Application
    Filed: March 30, 2022
    Publication date: October 5, 2023
    Inventors: Abhishek Anil Sharma, Wilfred Gomes, Rajabali Koduri, Pushkar Ranade
  • Publication number: 20230315305
    Abstract: Method and apparatus to implement an integrated circuit (IC) device to perform compression/decompression operations. In one embodiment, the IC device includes a memory array containing a plurality of memory cells to store data and compression/decompression circuitry to perform compression operations on data to be written to the memory array and decompression operations on data read from the memory array. The memory array and the compression/decompression circuitry are integrated in a same die but at different die depth. At least a portion of the memory array overlaps a portion of the compression/decompression circuitry in a same x-y plane.
    Type: Application
    Filed: April 2, 2022
    Publication date: October 5, 2023
    Inventors: Abhishek Anil Sharma, Wilfred Gomes, Pushkar Ranade, Rajabali Koduri
  • Publication number: 20230317561
    Abstract: In one embodiment, an apparatus includes a first die adapted on a second die. The first die may have a plurality of cores, each of the plurality of cores associated with a first plurality of through silicon vias (TSVs), and the second die may have dynamic random access memory (DRAM). The DRAM of the second die may have a plurality of local portions, each of the plurality of local portions associated with a second plurality of TSVs, where each of at least some of the plurality of cores are directly coupled to a corresponding local portion of the DRAM by the corresponding first and second plurality of TSVs. Other embodiments are described and claimed.
    Type: Application
    Filed: March 30, 2022
    Publication date: October 5, 2023
    Inventors: Abhishek Anil Sharma, Wilfred Gomes, Pushkar Ranade
  • Publication number: 20230317145
    Abstract: Methods and apparatus to implement an integrated circuit to operate based on data access characteristics. In one embodiment, the integrated circuit comprises a first array comprising a first plurality of memory cells, a second array comprising a second plurality of memory cells, both first and second arrays to store data of a processor, the second plurality of memory cells implementing a selector transistor of a memory cell within using a thin-film transistor (TFT), and a memory control circuit to write a first set of bits to the first array and a second set of bits to the second array upon determining the first set of bits is to be accessed more frequently than the second set of bits.
    Type: Application
    Filed: April 1, 2022
    Publication date: October 5, 2023
    Inventors: Abhishek Anil SHARMA, Pushkar RANADE, Wilfred GOMES, Rajabali KODURI